Refine Your Search

Topic

Author

Search Results

Technical Paper

AI-based EV Range Prediction with Personalization in the Vast Vehicle Data

2024-04-09
2024-01-2868
It is an important factor in electric vehicles to show customers how much they can drive with the energy of the remaining battery. If the remaining mileage is not accurate, electric vehicle drivers will have no choice but have to feel anxious about the mileage. Additionally, the potential customers have range anxiety when they consider Electric Vehicles. If the remaining mileage to drive is wrong, drivers may not be able to get to the charging station and may not be able to drive because the battery runs out. It is important to show the remaining available driving range exactly for drivers. The previous study proposed an advanced model by predicting the remaining mileage based on actual driving data and based on reflecting the pattern of customers who drive regularly. The Bayesian linear regression model was right model in previous study.
Technical Paper

A study on estimation of stuck probability in off-road based on AI

2024-04-09
2024-01-2866
After the COVID-19 pandemic, leisure activities and cultures have undergone significant transformations. Particularly, there has been an increased demand for outdoor camping. Consequently, the need for capabilities that allow vehicles to navigate not only paved roads but also unpaved and rugged terrains has arisen. In this study, we aim to address this demand by utilizing AI to introduce a 'Stuck Probability Estimation Algorithm' for vehicles on off-road. To estimate the 'Stuck Probability' of a vehicle, a mathematical model representing vehicle behavior is essential. The behavior of off-road driving vehicles can be characterized in two main aspects: firstly, the harshness of the terrain (how uneven and rugged it is), and secondly, the extent of wheel slip affecting the vehicle's traction.
Technical Paper

A Study on Overcoming Unavailable Backward Driving and a New Fail-Safe Strategy for R-Gearless (P)HEV System

2024-04-09
2024-01-2170
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study.
Technical Paper

Maximizing FCEV Stack Cooling Performance: Developing a Performance Prediction Model Based on Machine Learning for Evaporative Cooling Radiator

2024-04-09
2024-01-2586
Recently, regulations on automobile emission have been significantly strengthened to address climate change. The automobile industry is responding to these regulations by developing electric vehicles that use batteries and fuel-cells. Automobile emissions are environmentally harmful, especially in the case of vehicles equipped with high-temperature and high-pressure diesel engines using compression-ignition, the proportion of nitrogen oxides (NOx) emissions reaches as high as 85%. Additionally, air pollution caused by particulate matter (PM) is six to ten times higher compared to gasoline engines. Therefore, the electrification of commercial vehicles using diesel engines could potentially yield even greater environmental benefits. For commercial vehicles battery electric vehicles (BEVs) require a large number of batteries to secure a long driving range, which reduces their maximum payload capacity.
Technical Paper

A Study on Reliability-Based Maximum Service Temperature Estimation of Plastic Automotive Parts

2024-04-09
2024-01-2421
Recently, the environmental temperature of vehicles is changing due to the electrification of vehicles and improved internal combustion engine system to reduce carbon emissions. However, mechanical properties of plastic materials change very sensitively to environmental temperature changes, and mechanical properties decrease when exposed to high temperatures. Therefore, it is important to estimate lifespan estimation of plastic parts according to temperature changes. In this paper, reliability analysis process to estimate the maximum service temperature of plastic parts was developed using aging data of material properties, environmental condition data of automotive parts, and field driving condition data. Changes in the mechanical properties of plastic materials such as glass fiber reinforced polyamide materials were tested. The environmental exposure temperature of the vehicle and parts was measured, and the general driving pattern of the vehicle was analyzed.
Technical Paper

A Study on the Evaluation of UX of Mid SUV

2024-04-09
2024-01-2460
In recent years, with the advent of the Fourth Industrial Revolution and the COVID-19 pandemic, people's lives worldwide have undergone significant changes. Additionally, the emergence of a new generation of consumers known as the millennial generation has led to a high demand for multipurpose family cars. The perspective is shifting towards choosing premium products that enhance the quality of life and pursue their own happiness and comfort through technology, rather than simply selecting a midsize SUV based on the increase in family size. We aim to meet the needs of these global customers by conducting research and developing various new features that were not previously available in midsize SUVs. In this study, we defined the actual target users for midsize SUVs and established UX concepts by analyzing their characteristics. Based on this, we employed an optimal design approach by analyzing the evaluation results by country for the various features implemented within the vehicle.
Technical Paper

Thermal Characterization of Lithium-Ion Batteries under Varying Operating Conditions

2024-04-09
2024-01-2667
Despite the widespread adoption of lithium-ion batteries in various applications such as energy storage, concerns related to thermal management have been persisting, primarily due to the heat generated during their operation and the associated adverse effects on its efficiency, safety, and lifetime. Hence, the thermal characterization of lithium-ion batteries is essential for optimizing the layout of the battery cells for a pack design and the corresponding thermal management system. This study focuses on an experimental investigation of heat generation of Li-ion batteries under different operating conditions, including charge-discharge rates, ambient temperatures, states of charge, and compressive pressure. The experiments were conducted using a custom-designed multifunctional calorimeter, enabling precise measurement of the heat generation rate of the battery and the entropy coefficient. The measured results have shown a good match with the calculated heat generation rate.
Technical Paper

Development of Ammonia Direct Injection 4-Cylinder Spark-Ignition Engine

2024-04-09
2024-01-2818
As the carbon neutrality to reduce greenhouse gas emissions has become a global movement, the development of power sources using carbon-free fuels is an essential task for the industry. Accordingly, many companies in various fields that need carbon reduction are striving to develop power sources and build energy value chains using carbon-free or carbon-neutral fuels such as hydrogen and E-fuel. Ammonia, which is also a carbon-free fuel, stands as an efficient energy vector delivering high energy density and flexibility in transportation and storage, capable of mitigating hydrogen’s key drawbacks. However, difficulty of controlling combustion of ammonia due to its fuel characteristics limited the development of internal combustion engines using ammonia to the basic research stage in the limited operating conditions. Hyundai Motor Company presents the development of ammonia fueled 4-cylinder SI engine using direct injection strategy, designed based on 2.5L LPG T-DI engine.
Technical Paper

Development and optimization of jet impingement on dimpled plate for maximizing cooling performance of an inverter

2024-04-09
2024-01-2216
A need to develop a cooling method with high cooling performance like jet impingement is increased as high power of an inverter is required. Jet Impingement on the dimpled plate would increase thermal performance than that of flat plate. Many previous researchers have dealt with the multi jet impingement on flat plate and some results of the study on dimpled plate evaluate the effect on heat transfer coefficients on several limited cases, making it difficult to apply them to inverter designs. Therefore, in this paper, heat transfer performance, pressure drop, and robustness at micro-scale of jet impingement on the dimpled plate were investigated in detail and the correlations of each performance were proposed. Finally, the optimal design was presented. The cooling performance was influenced by the jet array and the effect of depth and width of the dimples.
Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

Brake Pad Wear Monitor using MOC (Motor on Caliper) EPB ECU

2022-09-19
2022-01-1167
With the spread of new trends such as autonomous driving and vehicle subscription service, drivers may pay less attention to the maintenance of the vehicle. Brake pads being safety critical components, the wear condition of all service brakes is required by regulation to be indicated by either acoustic of optical devices or a means of visually checking the degree of brake lining wear [1]. Current application of the wear indicator in the market uses either sound generating metal strip or wire harness based pad wear sensor. The former is not effective in generating clear alarm to the driver, and the latter is not cost effective, and there is a need for more effective and low cost solution. In this paper, a pad wear monitoring system using MOC(Motor On Caliper) EPB(Electric Parking Brake) ECU is proposed. An MOC EPB is equipped with a motor, geartrain and an ECU. The motor current when applying the parking brake is influenced by the mechanical load at the brake pad side of the system.
Technical Paper

A Development of SCR (Selective Catalytic Reduction) Model and Its Applications

2022-03-29
2022-01-0557
A physics-based model for SCR (Selective Catalytic Reduction) was developed based on five independent SGB (Synthetic Gas Bench) tests. There are NH3 adsorption & desorption test, NO oxidation test, NH3 oxidation test, SCR reaction (NOx & NH3) test and SV (Space Velocity) test. To validate the accuracy of SCR model’s prediction, transient reactor tests were conducted at four different input conditions. A newly developed SCR model showed more than 90% prediction accuracy in transient test conditions in view of cumulative NOx. Validation of SCR model was conducted on 1.6L light duty diesel vehicle in the WLTC (Worldwide Harmonized Light vehicles Test Cycle). Based upon this SCR model, vehicle level SCR calibrations used for urea dosing control were made and validated in the emission test cycles like WLTC.
Technical Paper

A Research on Autonomous Vehicle Control in Track Beyond Its Limits of Handling

2021-04-06
2021-01-0977
This paper presents the research related to the self-driving system that has been actively carried out recently. Previous studies have been limited to ensure the path following performance in linear and steady state-alike handling region with small lateral acceleration. However, in the high speed driving, the vehicle cornering response is extended to nonlinear region where tire grips are saturated. This requires a technology to create the driving path for minimum time maneuvering while grasping the tire grip limits of the vehicle in real time. The entire controller consists of three stages-hierarchy: The target motion is determined in the supervisor phase, and the target force to follow the target behavior is calculated in the upper stage controller. Finally, the lower stage controller calculates the actuator phase control input corresponding to the target force.
Technical Paper

Body Cross-Sectional Stiffness Criteria for the Optimal Development of the BIW Weight and Torsional Stiffness

2021-04-06
2021-01-0797
Body-in-white plays a key role in protecting passengers in the event of collision between vehicles, and also endures external forces during cornering in a vehicle. Stiffness of body-in-white is the basic characteristic of a car body, and it is closely related to the full-vehicle-level performance such as body durability, ride and handling, etc. There have been many attempts to correlate body stiffness to full-vehicle-level performance, and studying the relationship between torsional body stiffness and durability has been the popular topic among others. In general, it is believed to be true that bodies with high torsional stiffness exhibit good durability performance, and in many cases this assumption seems to be verified. However, not all cases are true to this assumption. In this paper, relationship between torsional body stiffness and body durability has been closely studied.
Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
Journal Article

Analysis of Formaldehyde Scavenger and Its Reaction Products in POM Using Mass Spectrometry

2021-04-06
2021-01-0360
To meet the indoor air quality guideline of newly manufactured vehicles in Korea, China, and other countries, low formaldehyde grade POM (Polyoxymethylene) is used for interior parts essentially. In this paper, formaldehyde scavengers from of 2 commercial low formaldehyde grade POM pellets were identified by LC-MS (Liquid chromatograph-Mass spectrometer) as sebacic dihydrazide and dodecanedioic dihydrazide respectively. The reaction products between formaldehyde and formaldehyde scavengers were also detected, which were converted from hydrazide to hydrazone. So, this kind of additive would be gradually consumed by repetitive molding process or exposure to heat according to formaldehyde emission increase. We are expecting to apply this analytical method and result for quality control and benchmark of low formaldehyde grade POM.
Technical Paper

Eco-Vehicle Battery System Big-Data Analysis and Fault Mode and Fault Tree Analysis (FTA) Related Robust System Development

2020-04-14
2020-01-0447
High-voltage battery system plays a critical role in eco-friendly vehicles due to its effect on the cost and the electric driving range of eco-friendly vehicles. In order to secure the customer pool and the competitiveness of eco-vehicle technology, vehicle electrification requires lowering the battery cost and satisfying the customer needs when driving the vehicles in the real roads, for example, maximizing powers for fun drive, increasing battery capacities for achieving appropriate trip distances, etc. Because these vehicle specifications have a critical effect on the high-voltage battery specification, the key technology of the vehicle electrification is the appropriate decision on the specification of the high-voltage battery system, such as battery capacity and power. These factors affect the size of battery system and vehicle under floor design and also the profitability of the eco-friendly vehicles.
Technical Paper

Pre-Validation Method of Steering System by Using Hybrid Simulation

2020-04-14
2020-01-0645
In this study, the preliminary validation method of the steering system is constructed and the objective is to satisfy the target performance in the conceptual design stage for minimizing the problems after the detailed design. The first consideration about steering system is how to extract the reliable steering effort for parking. The tire model commonly used in MBD(Multi-Body Dynamics) has limited ability to represent deformations under heavy loads. Therefore, it is necessary to study adequate tire model to simulate the behavior due to the large deformation and friction between the ground and the tire. The two approaches related with F tire model and mathematical model are used. The second is how to extract each link’s load in the conceptual design stage. Until now, each link’s load could be derived only by actual vehicle test, and a durability analysis was performed using only pre-settled RIG test conditions.
Technical Paper

The Effect of Driver's Behavior and Environmental Conditions on Thermal Management of Electric Vehicles

2020-04-14
2020-01-1382
Worldwide projections anticipate a fast-growing market share of the battery electric vehicles (BEVs) to meet stringent emissions regulations for global warming and climate change. One of the new challenges of BEVs is the effective and efficient thermal management of the BEV to minimize parasitic power consumption and to maximize driving range. Typically, the total efficiency of BEVs depends on the performance and power consumption of the thermal management system, which is highly affected by several factors, including driving environments (ambient temperature and traffic conditions) and driver's behavior (aggressiveness). Therefore, this paper investigates the influence of these factors on energy consumption by using a comprehensive BEV simulation integrated with a thermal management system model. The vehicle model was validated with experimental data, and a simulation study is performed by using the vehicle model over various traffic scenarios generated from a traffic simulator.
X