Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Bi-Level Optimization Approach for Eco-Driving of Heavy-Duty Vehicles

2023-08-28
2023-24-0172
With the increase of heavy-duty transportation, more fuel efficient technologies and services have become of great importance due to their environmental and economical impacts for the fleet managers. In this paper, we first develop a new analytical model of the heavy-truck for its dynamics and its fuel consumption, and valid the model with experimental measurements. Then, we propose a bi-level optimization approach to reduce the fuel consumption, thus the CO2 emissions, while ensuring several safety constraints in real-time. Numerical results show that important reduction of the fuel consumption can be achieved, while satisfying imposed safety constraints.
Technical Paper

A Fully-Analytical Fuel Consumption Estimation for the Optimal Design of Light- and Heavy-Duty Series Hybrid Electric Powertrains

2017-03-28
2017-01-0522
Fuel consumption is an essential factor that requires to be minimized in the design of a vehicle powertrain. Simple energy models can be of great help - by clarifying the role of powertrain dimensioning parameters and reducing the computation time of complex routines aiming at optimizing these parameters. In this paper, a Fully Analytical fuel Consumption Estimation (FACE) is developed based on a novel GRaphical-Analysis-Based fuel Energy Consumption Optimization (GRAB-ECO), both of which predict the fuel consumption of light- and heavy-duty series hybrid-electric powertrains that is minimized by an optimal control technique. When a drive cycle and dimensioning parameters (e.g. vehicle road load, as well as rated power, torque, volume of engine, motor/generators, and battery) are considered as inputs, FACE predicts the minimal fuel consumption in closed form, whereas GRAB-ECO minimizes fuel consumption via a graphical analysis of vehicle optimal operating modes.
X