Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Toward Predictive Combustion Modeling of CNG SI Engines in 1D Simulation Tools

2020-09-15
2020-01-2079
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional fuel to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Experimental Characterization of Methane Direct Injection from an Outward-Opening Poppet-Valve Injector

2019-09-09
2019-24-0135
The in-cylinder direct injection of natural gas can be a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, both experimentally and by numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility and the small length scale. In this work, the under-expanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by high-speed schlieren imaging. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 18. The gaseous jet has been characterized in terms of its macroscale parameters. A scaling-law analysis of the results has been performed. The gas-dynamic structure at the nozzle exit has been also investigated.
Technical Paper

Emission Factors Evaluation in the RDE Context by a Multivariate Statistical Approach

2019-09-09
2019-24-0152
The Real Driving Emission (RDE) procedure will measure the pollutants, such as NOx, emitted by cars while driven on the road. RDE will not replace laboratory tests, such as the current WLTP but it will be added to them. RDE is complementary to the laboratory-based procedure to check the pollutant emissions level of a light-duty vehicle in real driving conditions. This means that the car will be driven on a real road according to random acceleration and deceleration patterns conditioned by traffic flow. So, the procedure will ensure that cars deliver real emissions over on-road and so the currently observed differences between emissions measured in the laboratory and those measured on road under real-world conditions, will be reduced. However, the identification of a path on the road to check the test conditions of RDE is not easy and hardly repeatable.
Technical Paper

Development of a Dedicated CNG Three-Way Catalyst Model in 1-D Simulation Platforms

2019-09-09
2019-24-0074
A growing interest towards heavy-duty engines powered with NG, dictated by stringent regulations in terms of emissions, has made it essential to study a specific Three-Way Catalyst (TWC). Oxygen storage phenomena characterize the catalytic converter efficiency under real world driving operating conditions and, consequently, during strong dynamics in Air-to-Fuel ratio (AFR). A numerical “quasi-steady” model has been set-up to simulate the chemical process inside the reactor. A dedicated experimental campaign has been performed in order to evaluate the catalyst response to a defined λ variation, thus providing the data necessary for the numerical model validation. In fact, goal of the present research activity was to investigate the effect of very fast composition transitions of the engine exhaust typical of the mentioned driving conditions (including fuel cutoffs etc.) on the catalyst performance and on related emissions.
Technical Paper

Impact of Cooled EGR on Performance and Emissions of a Turbocharged Spark-Ignition Engine under Low-Full Load Conditions

2019-09-09
2019-24-0021
The stringent worldwide exhaust emission legislations for CO2 and pollutants require significant efforts to increase both the combustion efficiency and the emission quality of internal combustion engines. With this aim, several solutions are continuously developed to improve the combustion efficiency of spark ignition engines. Among the various solutions, EGR represents a well-established technology to improve the gasoline engine performance and the nitrogen-oxides emissions. This work presents the results of an experimental investigation on the effects of the EGR technique on combustion evolution, knock tendency, performance and emissions of a small-size turbocharged PFI SI engine, equipped with an external cooled EGR system. Measurements are carried out at different engine speeds, on a wide range of loads and EGR levels. The standard engine calibration is applied at the reference test conditions.
Technical Paper

Outwardly Opening Hollow-Cone Diesel Spray Characterization under Different Ambient Conditions

2018-09-10
2018-01-1694
The combustion quality in modern diesel engines depends strictly on the quality of the air-fuel mixing and, in turn, from the quality of spray atomization process. So air-fuel mixing is strongly influenced by the injection pressure, geometry of the nozzle duct and the hydraulic characteristics of the injector. In this context, spray concepts alternative to the conventional multi-hole nozzles could be considered as solutions to the extremely high injection pressure increase to assure a higher and faster fuel-air mixing in the piston bowl, with the final target of increasing the fuel efficiency and reducing the engine emissions. The study concerns an experimental depiction of a spray generated through a prototype high-pressure hollow-cone nozzle, under evaporative and non-evaporative conditions, injecting the fuel in a constant-volume combustion vessel controlled in pressure and temperature up to engine-like gas densities in order to measure the spatial and temporal fuel patterns.
Technical Paper

Assessment of the New Features of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector by Means of Engine Performance Characterization and Spray Visualization

2018-09-10
2018-01-1697
The application of more efficient compression ignition combustion concepts requires advancement in terms of fuel injection technologies. The injector nozzle is the most critical component of the whole injection system for its impact on the combustion process. It is characterized by the number of holes, diameter, internal shape, and opening angle. The reduction of the nozzle hole diameter seems the simplest way to promote the atomization process but the number of holes must be increased to keep constant the injected fuel mass. This logic has been applied to the development of a new generation of injectors. First, the tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate. The vertical movement of the needle generates an annulus area for the fuel delivery on 360 degrees, so controlling the atomization as a function of the vertical plate position.
Technical Paper

Assessment of Engine Control Parameters Effect to Minimize GHG Emissions in a Dual Fuel NG/Diesel Light Duty Engine

2018-04-03
2018-01-0266
The interest in Natural Gas (NG) as alternative fuel for transportation is constantly growing, mostly due to its large availability and lower environmental impact with respect to gasoline or diesel fuel. In this scenario, the application of the Dual Fuel (DF) Diesel- Natural Gas (NG) combustion concept to light duty engines can represent an important route to increment the diffusion of natural gas use. Many studies have proven the benefits of DF with respect to conventional diesel combustion in terms of CO2, NOx, PM and PN emissions, with the main drawback of high unburned hydrocarbon, mainly at low/partial engine loads. This last aspect still prevents the application of DF mode to small displacement engines. In the present work, a 2.0 L Euro 5 compliant diesel engine, equipped with an advanced electronic closed-loop combustion control (CLCC) system, has been set up to operate in DF mode and tested on a dyno test bench.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
Technical Paper

Statistical Determination of Local Driving Cycles Based on Experimental Campaign as WLTC Real Approach

2017-09-04
2017-24-0138
In the context of a transport sustainability, some solutions could be proposed from the integration of many disciplines, architects, environmentalists, policy makers, and consequently it may be addressed with different approaches. These solutions would be applied at different geographical levels, i.e. national, regional or urban scale. Moreover, the assessment of cars emissions in real use plays a fundamental role for their reductions. This is also the direction of the new harmonized test procedures (WLTP). Furthermore, it is fundamental to keep in mind that the new WLTC cycle will reproduce a situation closer to the reality comparing to the EUDC/NEDC driving cycle. In this paper, we will be focused on vehicle kinematic evaluation aimed at valuation of traffic situation and emissions.
Technical Paper

How Much Regeneration Events Influence Particle Emissions of DPF-Equipped Vehicles?

2017-09-04
2017-24-0144
Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both mass, PM, and number, PN) from diesel engines, however many studies reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature survey is presented. During DPF active regeneration, most of the literature studies showed an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors could influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
Technical Paper

Analysis of a Prototype High-Pressure “Hollow Cone Spray” Diesel Injector Performance in Optical and Metal Research Engines

2017-09-04
2017-24-0073
Technologies for direct injection of fuel in compression ignition engines are in continuous development. One of the most investigated components of this system is the injector; in particular, main attention is given to the nozzle characteristics as hole diameter, number, internal shape, and opening angle. The reduction of nozzle hole diameter seems the simplest way to increase the average fuel velocity and to promote the atomization process. On the other hand, the number of holes must increase to keep the desired mass flow rate. On this basis, a new logic has been applied for the development of the next generation of injectors. The tendency to increase the nozzle number and to reduce the diameter has led to the replacement of the nozzle with a circular plate that moves vertically. The plate motion allows to obtain an annulus area for the delivery of the fuel on 360 degrees; while the plate lift permits to vary the atomization level of the spray.
Technical Paper

Parametric Analysis of the Effect of Pilot Quantity, Combustion Phasing and EGR on Efficiencies of a Gasoline PPC Light-Duty Engine

2017-09-04
2017-24-0084
In this paper, a parametric analysis on the main engine calibration parameters applied on gasoline Partially Premixed Combustion (PPC) is performed. Theoretically, the PPC concept permits to improve both the engine efficiencies and the NOx-soot trade-off simultaneously compared to the conventional diesel combustion. This work is based on the design of experiments (DoE), statistical approach, and investigates on the engine calibration parameters that might affect the efficiencies and the emissions of a gasoline PPC. The full factorial DoE analysis based on three levels and three factors (33 factorial design) is performed at three engine operating conditions of the Worldwide harmonized Light vehicles Test Cycles (WLTC). The pilot quantity (Qpil), the crank angle position when 50% of the total heat is released (CA50), and the exhaust gas recirculation (EGR) factors are considered. The goal is to identify an engine calibration with high efficiency and low emissions.
Technical Paper

A “Dynamic System” Approach for the Experimental Characterization of a Multi-Hole Spray

2017-09-04
2017-24-0106
The analysis of a spray behavior is confined to study the fluid dynamic parameters such as axial and radial velocity of the droplets, size distribution of the droplets, and geometrical aspect as the penetration length. In this paper, the spray is considered like a dynamic system and consequently it can be described by a number of parameters that characterize its dynamic behavior. The parameter chosen to describe the dynamic behavior is the external cone angle. This parameter has been detected by using an experimental injection chamber, a multi-hole (8 holes) injector for GDI applications and recorded by a high-speed C-Mos camera. The images have been elaborated by a fuzzy logic and neural network algorithm and are processed by using a chaos deterministic theory. This procedure carries out a map distribution of the working point of the spray and determines the stable (signature of the spray) and instable behavior.
Journal Article

Real Time Prediction of Particle Sizing at the Exhaust of a Diesel Engine by Using a Neural Network Model

2017-09-04
2017-24-0051
In order to meet the increasingly strict emission regulations, several solutions for NOx and PM emissions reduction have been studied. Exhaust gas recirculation (EGR) technology has become one of the more used methods to accomplish the NOx emissions reduction. However, actual control strategies do not consider, in the definition of optimal EGR, its effect on particle size and density. These latter have a great importance both for the optimal functioning of after-treatment systems, but also for the adverse effects that small particles have on human health. Epidemiological studies, in fact, highlighted that the toxicity of particulate particles increases as the particle size decreases. The aim of this paper is to present a Neural Network model able to provide real time information about the characteristics of exhaust particles emitted by a Diesel engine.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Improving Acoustic Performance of an Air Filter Box. TL Analysis and Device Optimization

2016-06-15
2016-01-1813
The characteristics of the intake system affect both engine power output and gas-dynamic noise emissions. The latter is particularly true in downsized VVA engines, where a less effective attenuation of the pressure waves is realized, due to the intake line de-throttling at part-load. For this engine architecture, a refined air-box design is hence requested. In this work, the Transmission Loss (TL) of the intake air-box of a commercial VVA engine is numerically computed through a 3D FEM approach. Results are compared with experimental data, showing a very good correlation. The validated model is then coupled to an external optimizer (ModeFRONTIERTM) to increase the TL parameter in a prefixed frequency range. The improvement of the acoustic attenuation is attained through a shape deformation of the inner structure of the base device, taking into account constraints related to the device installation inside the engine bay.
Technical Paper

Fuzzy Logic Approach to GDI Spray Characterization

2016-04-05
2016-01-0874
Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
X