Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine Cascade Rig Design Tests and Results in App C Conditions

2023-06-15
2023-01-1419
Current modelling capability for engine icing accretion prediction is still limited for App. C. To further validate icing codes in complex engine geometries, it is necessary to perform additional experimental work in relevant geometrical and environmental conditions. Within the frame of ICE GENESIS [1], an experiment has been setup to replicate the condition at the inlet of an engine first stage compressor. This paper describes the choices for the design of the engine compressor model, the setup within the icing wind tunnel and the methodology employed to obtain the results. Additionally, more effort has been focused on obtaining accurate ice shapes using a 3D scanning system. Results of 3D scans are given.
Technical Paper

Experimental Simulation of Natural-Like Snow Conditions in the Rail Tec Arsenal (RTA) Icing Wind Tunnel

2023-06-15
2023-01-1407
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented.
Technical Paper

Upstream Disturbance Effects on Self-Similarity in the Wake of a DrivAer Model

2023-04-11
2023-01-0014
This study aims to provide an understanding of self-similarity in the turbulent wake generated by a Fastback DrivAer automotive model and assess the impact of upstream disturbances on the wake. The disturbances are generated using a circular cylinder placed five cylinder diameters upstream. Multiple ‘cylinder-model’ positions were tested by offsetting the lateral positioning of the cylinder with respect to the centreline of the model. Data was obtained at cross-planes in the wake going from 25% to 100% car length. Wind tunnel data has been obtained using a total pressure probe rake and a four-hole cobra probe. Data has also been obtained using RANS based simulations with k – ε realisable turbulence model. Mean axial-component velocity profiles were analysed with momentum thickness (θ) and vorticity thickness (δω) used as the scaling parameters. It was seen that self-similarity marginally exists in the wake depending on the upstream conditions and the scaling parameter.
Technical Paper

Development of an Autonomous Battery Electric Vehicle

2019-01-18
2019-01-5000
Autonomous vehicles have been shown to increase safety for drivers, passengers, and pedestrians and can also be used to maximize traffic flow, thereby reducing emissions and congestion. At the same time, governments around the world are promoting the usage of battery electric vehicles (BEVs) to reduce and control the emissions of CO2. This has made the development of autonomous vehicles and electric vehicles a very active research area and has prompted a significant amount of government funding. This article presents the detailed design of a low-cost platform for the development of an autonomous electric vehicle. In particular, it focuses on the design of the electrical architecture and the control strategy, tailored around the usage of affordable sensors and actuators. The specifications of the components are extensively discussed in relation to the performance target.
Technical Paper

On the Aerodynamics of an Enclosed-Wheel Racing Car: An Assessment and Proposal of Add-On Devices for a Fourth, High-Performance Configuration of the DrivAer Model

2018-04-03
2018-01-0725
A modern benchmark for passenger cars - DrivAer model - has provided significant contributions to aerodynamics-related topics in automotive engineering, where three categories of passenger cars have been successfully represented. However, a reference model for high-performance car configurations has not been considered appropriately yet. Technical knowledge in motorsport is also restricted due to competitiveness in performance, reputation and commercial gains. The consequence is a shortage of open-access material to be used as technical references for either motorsport community or academic research purposes. In this paper, a parametric assessment of race car aerodynamic devices are presented into four groups of studies. These are: (i) forebody strakes (dive planes), (ii) front bumper splitter, (iii) rear-end spoiler, and (iv) underbody diffuser.
Journal Article

The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)

2017-10-08
2017-01-2293
Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
Technical Paper

Comparison of the Far-Field Aerodynamic Wake Development for Three DrivAer Model Configurations using a Cost-Effective RANS Simulation

2017-03-28
2017-01-1514
The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at Reynolds and Mach numbers of 5.2×106 and 0.13, respectively. Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 1.0×107 cells.
Technical Paper

Complete Body Aerodynamic Study of three Vehicles

2017-03-28
2017-01-1529
Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
Technical Paper

Full Vehicle Aero-Thermal Cooling Drag Sensitivity Analysis for Various Radiator Pressure Drops

2016-04-05
2016-01-1578
Simulations are presented which fully couple both the aerodynamics and cooling flow for a model of a fully engineered production saloon car (Jaguar XJ) with a two-tier cooling pack. This allows for the investigation of the overall aerodynamic impact of the under-hood cooling flow, which is difficult to predict experimentally. The simulations use a 100 million-element mesh, surface wrapped and solved to convergence using a commercially available RANS solver (STARCCM+). The methodology employs representative boundary conditions, such as rotating wheels and a moving ground plane. A review is provided of the effect of cooling flows on the vehicle aerodynamics, compared to published data, which suggest cooling flow accounts for 26 drag counts (0.026 Cd). Further, a sensitivity analysis of the pressure drop curves used in the porous media model of the heat exchangers is made, allowing for an initial understanding of the effect on the overall aerodynamics.
Technical Paper

Performance Analyses of Driver-Vehicle-Steer-By-Wire Systems Considering Driver Neuromuscular Dynamics

2016-04-05
2016-01-0456
One main objective is to find out how these parameters interact and optimal driver control gain and driver preview time are obtained. Some steps further, neuromuscular dynamics is considered and the system becomes different from the simplified driver-vehicle system studied before. New optimal driver control gain and driver preview time could be obtained for both tensed and relaxed muscle state. Final step aims at analysing the full system considering driver, neuromuscular, steer-by-wire and vehicle models. The steer-by-wire system could potentially have a significant influence on the vehicle when the driver is at impaired state, which could be represented by setting higher response delay time or smaller preview time. Vehicle's stability and active safety could also be improved by introducing the steer-by-wire system.
Journal Article

Mechanistic Model for the Breakup Length in Jet Atomization

2016-03-14
2016-01-9042
In jet atomization, breakup length is the length of the continuous jet segment, before its breakup to discontinuous droplets. Hydrodynamic instability theory, implemented in CFD codes, is often complemented by semi-empirical correlations for breakup length, which may limit parametric investigations. A basic mechanistic approach to the breakup length prediction, based on a simple momentum balance between the injected jet and the aerodynamic drag force due to the surrounding gas, which complements the classic hydrodynamic instability breakup mechanism, is suggested. This model offers a simple complementing mechanistic model. It is shown that obtained results compare well with published experiments, and with the established empirical correlation of Wu and Faeth (1995). A simplified version of the model, taking into account an inviscid hydrodynamic model is shown to maintain plausibility of breakup length predictions in fuel-injection relevant conditions.
Technical Paper

Effects of Ice Accretion in an Aircraft Protective Mesh Strainer of a Fuel Pump

2015-09-15
2015-01-2449
This paper focuses on the investigation of the nature, process and effects of ice accretion on different feed pump strainers upstream of the aircraft feeding system. A suitable test rig was designed to circulate Jet A-1 containing water/ice contaminants at cold temperatures through the strainers. Following an extensive literature review, a number of screening tests were performed. These provided a strong base for an exhaustive study of fuel icing in the dynamic environment offered by the test rig. The effects of the rate of fuel cooling on the nature of ice were examined. As expected, it was observed that the yield of ice generated on the mesh screen increased with the water concentration in the fuel. It was also revealed that at higher cooling rates, a crust of snow formed on top of softer ice on the mesh screen.
Technical Paper

Trajectory Optimization of Airliners to Minimize Environmental Impact

2015-09-15
2015-01-2400
With the rapid growth in passenger transportation through aviation projected to continue into the future, it is incumbent on aerospace engineers to seek ways to reduce the negative impact of airliner operation on the environment. Key metrics to address include noise, fuel consumption, Carbon Dioxide and Nitrous Oxide emissions, and contrail formation. The research presented in this paper generates new aircraft trajectories to reduce these metrics, and compares them with typical scheduled airline operated flights. Results and analysis of test cases on trajectory optimization are presented using an in-house aircraft trajectory optimization framework created under the European Clean Sky Joint Technology Initiative, Systems for Green Operation Integrated Technology Demonstrator. The software tool comprises an optimizer core and relatively high fidelity models of the aircraft's flight path performance, air traffic control constraints, propulsion and other systems.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Journal Article

Application of Local Mechanical Tensioning and Laser Processing to Modify the Residual Stress State and Microstructural Features of Multi-Pass HSLA Steel

2015-04-14
2015-01-0604
In a multi-pass weld, the development of residual stress to a large extent depends on the response of the weld metal, heat affected zone and parent material to complex thermo-mechanical cycles during welding. Previous investigations on this subject mostly focused on mechanical tensioning or heat treatment to modify the residual stress distribution in and around the weld. In this research, microstructural refinement with modification of residual stress state was attempted by applying post weld cold rolling followed by laser processing. The hardening of the weld metal was evaluated after welding, post weld cold rolling and post weld cold rolling followed by laser processing. The residual stress was determined non-destructively by using neutron diffraction. Hardness results showed evidence of plastic deformation up to 4 mm below the weld surface.
Technical Paper

Large Eddy Simulation of Liquid Fuel Spray and Combustion with Gradually Varying Grid

2013-10-14
2013-01-2634
In this work, large eddy simulation (LES) with a K-equation subgrid turbulent kinetic energy model is implemented into the CFD code KIVA3V to study the features of liquid fuel spray and combustion using gradually varying grid in a constant volume chamber. The characteristic time-scale combustion model (CTC) incorporating a turbulent timescale is adopted to predict the combustion process and the SHELL auto-ignition model is used to predict auto-ignition. Combustion is also simulated using Parallel Detailed Chemistry with Lu's n-heptane reduced mechanism (58 species), which has been added into the KIVA3V-LES code. The computational results are compared with Sandia experimental data for non-reacting and reacting cases. As a result, LES can capture the complex structure of the spray and temperature distribution as well as the trend of ignition delay and flame lift-off length variations. Better results are obtained using the Parallel Detailed Chemistry than the CTC model.
Technical Paper

Mixing Effects of Early Injection in Diesel Spray Using LES Model with Different Subgrid Scale Models

2013-04-08
2013-01-1111
Early injection timing is an effective measure of pre-mixture formation for diesel low-temperature combustion. Three algebraic subgrid models (Smagorinsky model, dynamic Smagorinsky model and WALE model) and one-equation kinetic energy turbulent model using modified TAB breakup model (MTAB model) have been implemented into KIVA3V code to make a detailed large eddy simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a Ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is in good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES are less than with the RANS models, and following the increasing time, the sub-grid turbulent kinetic energy and viscosity also increase and are concentrated on the spray area.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Technical Paper

Experimental Investigation of Thin Water Film Stability and Its Characteristics in SLD Icing Problem

2011-06-13
2011-38-0064
The objective of this work is to investigate the thin water film characteristics by performing a range of experiments for different icing conditions. Our focus is on the SLD conditions where the droplets are larger and other effects like splashing and re-impingement could occur. Three features for the thin water film have been studied experimentally: the water film velocity, wave celerity and its wavelength. The experiments are performed in the icing facilities at Cranfiled University. The stability of the water film for the different conditions has been studied to find a threshold for transient from continues water film to non-continues form. A new semi-empirical method is introduced to estimate the water film thickness based on the experimental data of water film velocity in combination of theoretical analysis of water film dynamics. The outcome of this work could be implemented in SLD icing simulation but more analysis is needed.
Technical Paper

Low Cost Hybrid Motorcycle Optimisation Model

2010-09-28
2010-32-0131
The application of hybridization technology is now widely regarded as a significant step forward to reduce fuel consumption and hence CO₂ emissions for ground vehicles. Many programs and much research has been done on these technologies in the automotive market, however little work has been done in the very cost sensitive market sector of the small motorcycle. This paper introduces and discusses the application of a low-cost hybrid technology to small motorcycles and scooters, and reviews some of the initial trade-offs through the use of a new hybrid simulation model developed at Cranfield University. The study being presented assessed the existing Energy Storage Systems (ESS) in the market. This list was reduced, omitting options which posed a clear safety or cost risk, or solutions which would disproportionally increased the Gross Vehicle Weight (GVW). Also omitted were storage options which could not be production ready in the near term, 3 - 5 years.
X