Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Optimum Heat Release Rates for a Double Compression Expansion (DCEE) Engine

2017-03-28
2017-01-0636
The concept of double compression, and double expansion engine (DCEE) for improving the efficiency of piston reciprocating engines was introduced in SAE Paper 2015-01-1260. This engine configuration has separate high, and low pressure units thereby effectively reducing friction losses for high effective compression ratios. The presence of an additional expander stage also theoretically allows an extra degree of freedom to manipulate the combustion heat release rate so as to achieve better optimum between heat transfer, and friction losses. This paper presents a 1-D modeling study of the engine concept in GT-Power for assessing the sensitivity of engine losses to heat release rate. The simulations were constrained by limiting the maximum pressure to 300 bar.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Loss Analysis of a HD-PPC Engine with Two-Stage Turbocharging Operating in the European Stationary Cycle

2013-10-14
2013-01-2700
Partially Premixed Combustion (PPC) has demonstrated substantially higher efficiency compared to conventional diesel combustion (CDC) and gasoline engines (SI). By combining experiments and modeling the presented work investigates the underlying reasons for the improved efficiency, and quantifies the loss terms. The results indicate that it is possible to operate a HD-PPC engine with a production two-stage boost system over the European Stationary Cycle while likely meeting Euro VI and US10 emissions with a peak brake efficiency above 48%. A majority of the ESC can be operated with brake efficiency above 44%. The loss analysis reveals that low in-cylinder heat transfer losses are the most important reason for the high efficiencies of PPC. In-cylinder heat losses are basically halved in PPC compared to CDC, as a consequence of substantially reduced combustion temperature gradients, especially close to the combustion chamber walls.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Effect of Jet-Jet Interactions on the Liquid Fuel Penetration in an Optical Heavy-Duty DI Diesel Engine

2013-04-08
2013-01-1615
The liquid phase penetration of diesel sprays under reacting conditions is measured in an optical heavy-duty Direct Injection (DI) diesel engine. Hot gas reservoirs along the diffusion flames have previously been shown to affect the liftoff length on multi hole nozzles. The aim of this study is to see if they also affect the liquid length. The inter-jet spacing is varied together with the Top Dead Center density and the inlet temperature. To avoid unwanted interferences from the natural flame luminosity the illumination wavelength is blue shifted from the black body radiation spectrum and set to 448 nm. Filtered Mie scattered light from the fuel droplets is recorded with a high speed camera. The liquid fuel penetration is evaluated from the start of injection to the quasi steady phase of the jets. Knowledge of jet-jet interaction effects is of interest for transferring fundamental understanding from combustion vessels to practical engine applications.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Journal Article

Analysis of Errors in Heat Release Calculations Due to Distortion of the In-Cylinder Volume Trace from Mechanical Deformation in Optical Diesel Engines

2012-09-10
2012-01-1604
Optical engines of Bowditch design may suffer from distortion of the in-cylinder volume trace due to mechanical deformation from inertial, pressure and thermal forces. Errors in heat release calculation associated with such deformation were investigated in detail. The deformations were quantified by measuring the squish height during operation using high speed video. Deformations of all-metal engines were also estimated for comparison. The volume change caused by deformations did not change the calculated load significantly but caused errors in the heat release calculations both for optical and all metal engines. The errors at a given operating condition are smaller for all-metal engines but the importance is not necessarily smaller, since these engines normally are operated at higher loads. The errors can be eliminated by a corrected in-cylinder volume equation and a subtraction of heat release from a motored case.
Journal Article

Effects of Post-Injection Strategies on Near-Injector Over-Lean Mixtures and Unburned Hydrocarbon Emission in a Heavy-Duty Optical Diesel Engine

2011-04-12
2011-01-1383
Post-injection strategies aimed at reducing engine-out emissions of unburned hydrocarbons (UHC) were investigated in an optical heavy-duty diesel engine operating at a low-load, low-temperature combustion (LTC) condition with high dilution (12.7% intake oxygen) where UHC emissions are problematic. Exhaust gas measurements showed that a carefully selected post injection reduced engine-out load-specific UHC emissions by 20% compared to operation with a single injection in the same load range. High-speed in-cylinder chemiluminescence imaging revealed that without a post injection, most of the chemiluminescence emission occurs close to the bowl wall, with no significant chemiluminescence signal within 27 mm of the injector. Previous studies have shown that over-leaning in this near-injector region after the end of injection causes the local equivalence ratio to fall below the ignitability limit.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel

2009-04-20
2009-01-0944
This paper is the follow up of a previous work and its target is to demonstrate that the best fuel for a Compression Ignition engine has to be with high Octane Number. An advanced injection strategy was designed in order to run Gasoline in a CI engine. At high load it consisted in injecting 54 % of the fuel very early in the pilot and the remaining around TDC; the second injection is used as ignition trigger and an appropriate amount of cool EGR has to be used in order to avoid pre-ignition of the pilot. Substantially lower NOx, soot and specific fuel consumption were achieved at 16.56 bar gross IMEP as compared to Diesel. The pressure rise rate did not constitute any problem thanks to the stratification created by the main injection and a partial overlap between start of the combustion and main injection. Ethanol gave excellent results too; with this fuel the maximum load was limited at 14.80 bar gross IMEP because of hardware issues.
Technical Paper

Simultaneous Formaldehyde and Fuel-Tracer LIF Imaging in a High-Speed Diesel Engine With Optically Accessible Realistic Combustion Chamber

2005-09-11
2005-24-008
Simultaneous laser-induced fluorescence (LIF) imaging of formaldehyde and a fuel-tracer have been performed in a high-speed diesel engine. N-heptane and isooctane were used as fuel and toluene was used as a tracer. This arrangement made it possible to make simultaneous measurements of toluene by exciting at 266 nm and detecting at 270-320 nm while exciting formaldehyde at 355 nm and detecting at 400-500 nm. The aim of this study is to investigate how traditional fuel tracer and natural-occurring formaldehyde formed in the cool chemistry are transported in the piston bowl. A range of ignition delays were created by running the engine with different amounts of EGR. During this sweep the area where the low-temperature reactions take place were studied. The measurements were performed in a 0.5-l, single-cylinder optical engine running under conditions simulating a cruise-point, i.e., about 2.2 bar imep.
X