Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A MPC based Cooperated Control Strategy for Enhanced Agility and Stability of Four-Wheel Steering and Drive Electric Vehicles

2024-04-09
2024-01-2768
Multiple actuators equipped in electric vehicles, such as four- wheel steering (4WS) and four-wheel drive (4WD), provide more degrees of freedom for chassis motion control. However, developing independent control strategies for distinct actuator types could result in control conflicts, potentially degrading the vehicle's motion performance. To address this issue, a model predictive control (MPC) based steering-drive cooperated control strategy for enhanced agility and stability of electric vehicles with 4WD and 4WS is proposed in this paper. By designing the control constraints within the MPC framework, the strategy enables single-drive control, single-steering control, and steering-drive cooperative control. In the upper control layer, a linear time-varying MPC (LTV-MPC) is designed to generate optimal additional yaw moment and additional steering angles of front and rear wheels to enhance vehicle agility and lateral stability.
Journal Article

Estimation of Tire-road Friction Limit with Low Lateral Excitation Requirement Using Intelligent Tire

2023-04-11
2023-01-0755
Tire-road friction condition is crucial to the safety of vehicle driving. The emergence of autonomous driving makes it more important to estimate the friction limit accurately and at the lowest possible excitation. In this paper, an early detection method of tire-road friction coefficient based on pneumatic trail under cornering conditions is proposed using an intelligent tire system. The previously developed intelligent tire system is based on a triaxial accelerometer mounted on the inner liner of the tire tread. The friction estimation scheme utilizes the highly sensitive nature of the pneumatic trail to the friction coefficient even in the linear region and its approximately linear relationship with the excitation level. An indicator referred as slip degree indicating the utilization of the road friction is proposed using the information of pneumatic trail, and it is used to decide whether the excitation is sufficient to adopt the friction coefficient estimate.
Technical Paper

Development of a New 1.8L Down-Speeding Turbocharged Gasoline Engine with Miller Cycle

2018-09-10
2018-01-1712
Upcoming China 4th stage of fuel consumption regulation and China 6a emission legislation require improvement of many existing engines. This paper summarizes an upgrade of combustion system and mechanical layout for a four-cylinder engine family. Based on an existing production process for a naturally aspirated 2.0-liter gasoline engine, a 1.8-liter down-speeded and turbocharged gasoline engine is derived. Starting development by analysis of engine base geometry, a layout for a Miller-Cycle gas exchange with early closing of intake valves is chosen. Requirements on turbocharger configuration are investigated with one-dimensional gas exchange simulation and combustion process will be analyzed by means of 3D-CFD simulation. Challenging boundary conditions of a very moderate long-stroke layout with a stroke/bore-ratio of only 1.037 in combination with a cost efficient port fuel injection system and fixed valve lift profiles are considered.
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

NVH Performance Improvement of a Turbo-Charged GDI Engine based on the Simulation and Experiment Studies

2017-10-08
2017-01-2426
In recent years, Turbo-charged GDI technology is more and more widely used, which can meet the high demand of the engine performance and efficiency, but the resulting reliability and NVH issues also need to be paid attention to [1]. Traditional NVH performance improvement is mostly based on the experience design and repeatable test, which lead to longer development period, high cost, and also ineffective results. NVH performance simulations play more important role in engine vibration and noise prediction along with the development of the simulation technology[2][3]. The force response analysis is usually used to evaluate the NVH performance of the engine structure under the standard excitation. However, dynamic analysis of the crank train, valve train, and piston can be carried out based on the AVL software family, also the vibration and airborne noise of whole engine can be predicted directly at different speed and load [4].
Technical Paper

Simulation and Test Research for Integrated Exhaust Manifold and Hot End Durability

2017-10-08
2017-01-2432
In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is adopted in a three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. For turbocharger, in order to simulate the outlet turbulent flow and 3d rotation, a code was compiled to define this 3d rotation.
Journal Article

Vehicle Automatic Lane Changing based on Model Predictive Control

2016-04-05
2016-01-0142
In this paper, we present a model predictive controller for the autonomous vehicle lane-change maneuver. Firstly, an optimal trajectory is generated by polynomial, then, utilize it as the reference trajectory of the controller. It is well known that vehicle with nonholonomic constraints can not be feedback stabilized through continuously differentiable, time-invariant control laws. One of the advantages of MPC is the ability to handle constraints in a straightforward way. Quadratic programming is used to solve a linear MPC by successive linearization of an error model of the vehicle. Due to that the vehicle dynamics model is used, in order to prevent optimal solution cannot be obtained within the prescribed time, the relaxation factor in the objective function.
Journal Article

Application of the Hardware-in-the-Loop Technique to an Elastomeric Torsional Vibration Damper

2013-12-20
2013-01-9044
This work describes the development and use of the Hardware-in-the-Loop (HIL) technique to evaluate the dynamic behavior of a torsional vibration rubber damper (TVD) used in a spark ignition internal combustion engine. The TVD was adapted to a test bench designed for this research and the HIL technique was applied considering the simulated dynamic response of the crankshaft. The results of the torsional vibration amplitudes are compared with measured values in a steady-state well identified condition, to experimentally validate the proposed mathematical model and the possibility to use the HIL technique to evaluate dampers and crankshaft behavior in realistic long term tests, where the rubber degradation also affects the dynamic response of the system. Finally, it was concluded that simulated and measured signals presented a good correlation in some engine operational conditions, reaching the objectives of this study.
Journal Article

Crankcase and Crankshaft Coupled Structural Analysis Based on Hybrid Dynamic Simulation

2013-12-20
2013-01-9047
This paper presents the comparison of two different approaches for crankcase structural analysis. The first approach is a conventional quasi-static simulation, which will not be detailed in this work and the second approach involves determining the dynamic loading generated by the crankshaft torsional, flexural and axial vibrations on the crankcase. The accuracy of this approach consists in the development of a robust mathematical model that can couple the dynamic characteristics of the crankshaft and the crankcase, representing realistically the interaction between both components. The methodology to evaluate these dynamic responses is referred to as hybrid simulation, which consists of the solution of the dynamics of an E-MBS (Elastic Multi Body System) coupled with consecutive FEA (Finite Element Analysis).
X