Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Innovative Method of Child Injury Performance Optimization using Sled Tests

2021-09-22
2021-26-0008
Child injury performance evaluation is becoming critical part of almost all legal and consumer ratings-based vehicle safety evaluation protocols. Most of New CAR Assessment Programs (NCAP) now have separate ratings exclusively to evaluate child restraint system effectiveness and child dummy performance under various crash testing modes. OEM’s have need and challenge to maximize injury performance. Sled tests are conventionally used for tuning restraints like seat belts and airbags for driver and co-driver under various frontal type test conditions. However, second row seats are used for CRS/ Child injury performance evaluations. In the present study an attempt is made to simulate child injury performance of P3 dummy positioned on second row seat on defined child seat for 64 kmph frontal Offset deformable barrier type test conforming to Global NCAP. Sled pulses are carefully tuned to capture key injury patterns. Thence restraint parameters are tuned to improve child dummy injuries
Technical Paper

Evaluation of Accurate Tire Models for Vehicle Handling and Ride Comfort Simulations

2021-04-06
2021-01-0935
There is a growing need for the accurate Computer Aided Engineering (CAE) models for vehicle performance evaluation. The reduced product development time and complexity of the vehicle evaluation demands accurate prediction with CAE models. Vehicle dynamics performance evaluation is very critical in vehicle development process, which require very accurate vehicle and tire models. The tire characteristics are represented as mathematical, physics based and empirical models. There are different types of tire models exist like Fiala, PAC, SWIFT and FTire etc, which can be used for vehicle handling, ride and steering performance evaluation. There is a need to study and understand these tire models before applying to specific vehicle dynamic performance. There is a challenge to get the tire models as tire modeling require lot of tests and time consuming.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

EGR Flow Control Strategy for a Smaller Capacity Diesel Engine Using a Phase Shifting Chamber

2020-04-14
2020-01-1358
Exhaust gas recirculation (EGR) is an effective strategy to control NOx emissions in diesel engines. EGR reduces NOx through lowering the oxygen concentration in the combustion chamber, as well as through heat absorption. The stringent emission norms have forced diesel engines to further improve thermal efficiency and reduce nitrogen oxides (NOx). Throttle control is adopted in diesel intake system to control the EGR & fresh charge flow and to meet the emissions norms. In three or lesser cylinder. diesel engines, predominantly single and two-cylinder diesel engines, there is a higher possibility of the exhaust gas reaching the intake throttle and Particulate matter getting deposited on the throttle body. This can significantly affect the idling stability and intake restriction in prolonged usage. In idling condition, the clogged throttle body stagnates the fresh charge from entering the cylinder. The work aims at the study of flow pattern for EGR reaching the throttle body.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Journal Article

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

2019-11-21
2019-28-2397
Objective metrics for performance evaluation of ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by International Organization for Standardization (ISO) and Society of Automotive Engineers (SAE), which involve data processing, statistical analysis and complex mathematical operations on acquired data through simulation or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement. This work is about development of a centralized platform for quantification, visualization and comparison of ride, handling and steering performance metrics obtained from testing and simulation data as per relevant ISO standards.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
Technical Paper

Application of Reliability Technique for Developing a Test Methodology to Validate the Engine Mounted Components for Off-Road Applications under Vibration

2017-09-29
2017-01-7004
Vibrational fatigue is a metal fatigue caused by the forced vibrations which are purely random in nature. The phenomenon is predominantly important for the components/systems which are subjected to extreme vibration during its operation. In a vehicle, an engine is the main source of vibration. The vibrational fatigue, therefore, plays a key role in the deterioration of engine mounted components. Multiple test standards and methodologies are available for validating engine mounted parts of an automobile. These might not be appropriate in the case of an off- road vehicle as the vibrational exposure of engine mounted components of an off-road vehicle is entirely different. In the case of an off-road vehicle, the engine mounted components are subjected to a comparatively higher level of vibration for a longer duration of time as compared to the passenger cars.
Journal Article

Development of Hydrogen Fuelled Low NOx Engine with Exhaust Gas Recirculation and Exhaust after Treatment

2017-01-10
2017-26-0074
Air pollution caused by vehicular tail pipe emissions has become a matter of grave concern in major cities of the world. Hydrogen, a carbon free fuel is a clean burning fuel with only concern being oxides of nitrogen (NOx) formed. The present study focuses on the development of a hydrogen powered multi-cylinder engine with low NOx emissions. The NOx emissions were reduced using a combination of an in-cylinder control strategy viz. Exhaust Gas Recirculation (EGR) and an after treatment method using hydrogen as a NOx reductant. In the present study, the low speed torque of the hydrogen engine was improved by 38.46% from 65 Nm to 90 Nm @ 1200 rpm by operating at an equivalence of 0.64. The higher equivalence ratio operation compared to the conventional low equivalence ratio operation lead to an increase in the torque generated but increased NOx as well.
Technical Paper

Evaluation of Performance of DPF Cell Structure for Soot Loading, Regeneration and Pressure Drop Using CFD Simulation

2017-01-10
2017-26-0111
In recent times diesel powered vehicles are becoming popular due to improved performance and reduced exhaust emission with this the market share of diesel passenger cars expected to approach 60 % over the next few years. In compliance with future emission standards for diesel powered vehicles, it is required to use diesel particulate filters (DPF) along with other exhaust emission control devices. There is a need for more optimized DPF cell structure to collect maximum soot load with low pressure drop and improved exhaust performance from diesel vehicles in Indian driving conditions. In this thesis paper a detailed parametric study have been carried out on different DPF cell structures like Square, Hexagonal and combined cell geometry. The performances of different cell structure has been evaluated for maximum soot loading capacity and regeneration rate, pressure drop, temperature distribution across cell structure.
Journal Article

Design and Development of Electro Hydraulics Hitch Control for Agricultural Tractor

2017-01-10
2017-26-0227
Tractor hitch control system is used for attaching and operating various Agricultural Implements and for operating tipping trailer. The system has also got provision to attach additional Aux valves for rear and front mounted attachments. The rear mounted implements are coupled to the tractor using Three Point Linkage (3PL) System. The hitch hydraulics system consists of hydraulic pump, filter, piping’s, fittings and hydraulics lift unit. Hydraulics lift unit consists of a proportional control valve, cylinder, piston and power linkages. Conventional control valve is hydro mechanical part operated by mechanical linkages. The control valve and linkages plays major role in performance of hydraulics system. Hydraulics is required to operate in extreme conditions of soils such as very soft like sand to very hard like black cotton sand.
Technical Paper

Estimation of Temperature and Velocity Uniformity of Exhaust Gases in Heavy Commercial Vehicle Exhaust System having SCR After Treatment Technology

2016-02-01
2016-28-0112
For meeting upcoming BS IV & BS V emission norms in Heavy Commercial Vehicles, most of the manufacturers are taking SCR after treatment route. Though SCR system is more complex and involves higher cost impact, an optimized SCR system can bring down the payback period to about one year due to improved fuel economy. For development of an SCR after treatment system, selection of a correct SCR catalyst and its position in the system is very important. NOX conversion efficiency of catalyst depends on exhaust gas temperature at the catalyst and the velocity distribution over the face of the catalyst. Generally catalysts are evaluated for the conversion efficiency in engine test bed. In a drive to have a first-time-right solution, a CFD analysis was carried out considering the low and high flow rate conditions. CFD simulation models and the corresponding results were used as a predictive tool in the exhaust system development process.
Technical Paper

Cost Efficient Bharat (Trem) Stage IV Solutionsfor TractorEngines

2015-01-14
2015-26-0092
India's high Air Pollution level is the focus of discussions as we grow. Plans to combat this menace and implement the latest Technologies are gathering pace. The increasingly stringent emission legislations provide a continuous challenge for the non-road market. Tractor manufacturers are evaluating the need for cost-effective technology to meet upcoming stringent emissions targets. Simply following global approach may not work for Indian market considering the customer usage pattern & perceptions. With an anticipation of upcoming emission norms being based on US-EPA TIER-4 final up to 75 Hp, major technology up gradation is expected for farm equipment sold in India. The enormous diversification of engines within the different power classes as well as the operation specific requirements regarding various duty cycles, robustness and durability, requires specific solutions to meet these legal limits.
Technical Paper

Simultaneous Reduction of NOx and PM Emissions through Low Temperature EGR Cooling in Diesel Engines

2014-10-13
2014-01-2803
In this paper, Authors tried to investigate the influence of Low Temperature EGR (LtEGR) on NOx, PM emissions and fuel efficiency in NEDC 120 cycle. Sports Utility Vehicle (SUV) less than 3.5T vehicle selected for investigation of LtEGR. The existing water cooling circuit modified to suitable to handle the LtEGR concept without changing the existing EGR cooler. Cooled EGR technology has two benefits in terms of handling high EGR ratios and more fresh air within the engine displacement. Under this assumption separate LtEGR layout was prepared for the evolution of superior EGR cooling technologies and low pressure EGR.
Technical Paper

Emission Optimization Approach to Meet the Current Indian Emission Norm Without EGR Cooling for a Vehicle Equipped with Common Rail Diesel Engine

2014-03-24
2014-01-2022
In India, diesel engine powered vehicles are finding rising demand due to the subsidy offered on diesel. Currently, BS-IV emission norm (equivalent to E-IV in Europe) is in existence. To meet this emission norm, OEM look for improved engine design, use of common rail injection system, advanced after treatment. In the current article, a methodology is demonstrated by which the required emissions on multipurpose vehicle (MPV) powered with 2.2L common rail injection system was met with no need of EGR cooling. This was achieved by identifying the operating points from the BS-IV emission cycle where EGR cooling is beneficial. The next step involves assessing the loss of function due to its removal. The final step involves strategies which can bring the original optimized value of NOx-PM. Removal of EGR cooling avoids the cooling of intake charge and reduces the HC and CO emission. Also, it gets rid of complication in the under bonnet packaging and leads to maintenance free operation.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
X