Refine Your Search

Topic

Search Results

Technical Paper

An Experimental Approach Towards Sustainable Solution for Material Recycling of ELV Plastic Bumpers and EV Batteries

2024-01-16
2024-26-0164
A general automotive car is majorly composed of high strength steel (6%), other steel (50%), Iron (15%), Plastics (7%), Aluminum (4%) and others (Rubber, Glass, Textile) about 18%. End-of-life vehicles (ELVs) are a significant source of waste and pollution in the automotive industry. Recycling ELVs, particularly their plastic components, Li-ion batteries, catalytic converters, and critical technology components such as alternators, semi-conductor chips, and high tensile strength steel can reduce their environmental impact and conserve valuable raw materials. The paper conducts a SWOT analysis and a life cycle assessment (LCA) to evaluate the long-term viability and potential of ELV recycling, environmental impact, and carbon footprint.
Technical Paper

Experimental Approach for the Knocking Noise Source Identification & Its Suppression through Lubrication Regime Optimization in Crank-Train of an IC Engine

2022-10-05
2022-28-0067
Over the years, Fuel efficiency and cabin comfort of vehicle has become increasingly important in buying decision and can significantly give competitive edge to the vehicle in marketplace. Weight and friction reduction of rotating and reciprocating components in engines is one of the proven approaches to improve the efficiency of internal combustion engine. To reduce the friction, the general approach is to use low viscosity engine oils, improve the surface finish and reduce the contact area of sliding elements, switch over from sliding contact to rolling contact etc. However sometimes this approach has adverse impact on engine NVH characteristics due to occurrence of abnormal transient noise due to mechanical knocking of the components in specific operating conditions.
Technical Paper

A Cost-Effective Approach to Attain Near-Vehicle Conditions in Coolant Circuit of Engine Test Bench

2022-10-05
2022-28-0084
With advancement of technologies, upgradation of validation procedures and equipment on engine dynamometer test bed is required to simulate environment similar to vehicle and achieve accurate test results. A coolant conditioning system helps in achieving desired temperatures of coolant in the circuit during engine validation. However, unlike radiator type cooling systems of vehicles, conventional coolant conditioning systems on engine test beds generate negative pressure in circuit which poses a risk of coolant boiling, loss of intended heat transfer and hence higher temperature in cylinder head which can be detrimental for durability of critical components like valves, valve seats etc. This paper encompasses a stepwise approach followed to attain near-vehicle coolant pressure conditions for a naturally aspirated engine. Coolant used for this experiment was 50:50 (by volume) ethylene glycol and water mixture.
Technical Paper

Implementation of Atkinson Effect for Improved Fuel Efficiency of Gasoline Engine Using 1-D Simulation Software and its Validation with Experimental Data

2021-09-22
2021-26-0053
In order to meet the challenges of future CAFE regulations & pollutant emission, vehicle fuel efficiency must be improved upon without compromising vehicle performance. Optimization of engine breathing & its impact on vehicle level fuel economy, performance needs balance between conflicting requirements of vehicle Fuel Economy, performance & drivability. In this study a Port Fuel Injection, naturally aspirated small passenger car gasoline engine was selected which was being used in a typical small passenger car. Simulation approach was used to investigate vehicle fuel economy and performance, where-in 1D CFD Engine model was used to investigate and optimize Valve train events (Intake and exhaust valve open and close timings) for best fuel economy. Engine Simulation software is physics based and uses a phenomenological approach 0-D turbulent combustion model to calculate engine performance parameters. Engine simulation model was calibrated within 95% accuracy of test data.
Technical Paper

Virtual Validation of Gearbox Breather by CFD Simulation and Correlation with Testing

2021-09-22
2021-26-0321
Gearbox power transfer efficiency is a major factor in overall powertrain efficiency of a passenger vehicle. With rapidly changing emission and fuel efficiency regulations, there is a push to increase the gearbox efficiency to improve the overall fuel economy of the vehicle. In case of an existing gearbox, efficiency can be improved by using the low viscosity lubrication oil. Despite a benefit in increasing the gearbox efficiency, lowering down the viscosity of lubrication oil gives rise to few challenges with respect to its performance. One of these challenges is breather performance which defines that transmission oil should not come out of breather pipe in some pre-defined conditions during gearbox operation. As this validation is being carried out on proto parts when the complete system is ready, failure to satisfy the defined criteria for breather performance can lead to multiple trials.
Technical Paper

Analysis of Thermal Coating on Engine Performance Parameters & Fuel Economy of a Small Size NA Spark Ignition Engine

2021-09-15
2021-28-0134
With strict upcoming regulation norms, it becomes a challenging task for automotive industry to develop highly efficient engine that meets all the regulation requirements. The focus of automakers is to utilize fuel energy in most efficient way and to reduce the energy loss from the engine to improve thermal efficiency. Heat loss to the cooling medium is one of the prime losses inside the combustion chamber. Thermal barrier coating is used to reduce heat losses across combustion chamber surfaces (Piston, head, valves and cylinder liner) as it provides good insulation because of the prominent properties of coating materials like low thermal conductivity, low heat capacity, high melting point etc. This paper presents application and impact of thermal swing coating on thermal efficiency. Thermal swing coating material follows gas temperature quickly throughout the cycle which reduces the temperature difference between gas and coating surface and thus reduces the heat loss.
Technical Paper

Improving Rough Road NVH by Hydraulic Mount Design Optimization

2020-04-14
2020-01-0422
Vehicle cabin comfort emphasizes a specific image of a brand and its product quality. Low frequency powertrain induced noise and vibration levels are a major contributor affecting comfort inside passenger cabin. Thus, using hydraulic mount is a natural choice. Introduction of lighter body panels coupled with cost effective hydraulic mounts has resulted in some additional noises on rough road surfaces which are challenging to identify during design phase. This paper presents a novel approach to identify two such noises i.e. Cavitation noise and Mount membrane hitting noise based on component level testing which are validated at vehicle experimentally. These noises are encountered at 20~30kmph on undulated road surfaces. Sound quality aspect of such noises is also studied to evaluate the solution effectiveness.
Technical Paper

CFD Simulation of Transmission for Lubrication Oil Flow Validation and Churning Loss Reduction

2020-04-14
2020-01-1089
Rapidly changing emission and fuel efficiency regulations are pushing the design optimization boundaries further in the Indian car market which is already a very cost conscious. Fuel economy can be improved by reducing moving parts friction and weight optimization. Driveline or Transmission power losses are major factor in overall efficiency of rotating parts in a vehicle. Transmission efficiency can be improved by using low viscosity oil, reducing oil quantity and reducing churning losses in car transmission. Changes like low viscosity and reduced oil volume give rise to challenges like compromised lubrication and durability of rotating parts. This further leads to extended design cycles for launching new cars with better transmission efficiency and fuel economy into the market. Design cycle time can be reduced by using CFD simulation for oil flow validation in the early design stage.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Noise Problem Resolution and Sound Quality Improvement of Valve Timing Belt in 4 Cylinders PFI Gasoline Engine

2019-04-02
2019-01-0783
IC Engine Timing belt is a major noise prone area and it takes time during development to achieve acceptable NVH characteristics. In an existing engine under series production noise problem observed due to excitation of timing belt span by crank timing sprocket tooth. From vehicle perspective noise was heard in vehicle cabin at around idling RPM and a second peak observed around twice the initial RPM. This paper includes a methodology for use of computer based analytical simulation methods to predict timing belt dynamic behavior and NVH characteristics. Along with development of computer based multi body dynamic model for timing belt, validation of simulation model with actual testing was done and after correlation of testing and simulated results countermeasure were finalized based on iterations in multi body simulation model.
Technical Paper

Vehicle Cold Start Mode Fuel Economy Simulation Model Making Methodology

2019-04-02
2019-01-0898
The air pollution and global warming has become a major problem to the society. To counter this worldwide emission norms have become more stringent in recent times and shall continue to get further stringent in the next decade. From OEMs perspective with increased complexity, it has become a necessity to use simulation methods along with model based systems approach to deal with system level complexities and reduce model development time and cost to deal with the various regulatory requirements and customer needs. The simulation models must have good correlation with the actual test results and at the same time should be less complex, fast, and integrable with other vehicle function modelling. As the vehicle fuel economy is declared in cold start condition, the fuel economy simulation model of vehicle in cold start condition is required. The present paper describes a methodology to simulate the cold start fuel economy.
Technical Paper

Valve Opening and Closing Event Finalization for Cost Effective Valve Train of Gasoline Engine

2019-04-02
2019-01-1191
With more stringent emission norm coming in future, add more pressure on IC engine to improve fuel efficiency for survival in next few decades. In gasoline SI (spark ignition) engine, valve events have major influence on fuel economy, performance and exhaust emissions. Optimization of valve event demands for extensive simulation and testing to achieve balance between conflicting requirement of low end torque, maximum power output, part load fuel consumption and emission performance. Balance between these requirements will become more critical when designing low cost valve train without VVT (Variable valve timing) to reduce overall cost of engine. Higher CR (Compression ratio) is an important low cost measure to achieve higher thermal efficiency but creates issue of knocking thereby limiting low speed high load performance. The effective CR reduction by means of late intake valve closing (LIVC) is one way to achieve higher expansion ratio while keeping high geometric CR.
Technical Paper

Determination of the Polyurethane Parameters for Riding Comfort Evaluation in Automobile Seating Application

2019-04-02
2019-01-0931
Riding comfort for automobile seating can be classified into two categories, long time riding comfort and short term riding comfort. The attributes that govern the riding comfort includes static spring constant and energy lost due to hysteresis. The emerging trend towards long term riding comfort could be governed by the above mentioned factors. The hysteresis loss characteristic is related to Poly-Urethane (PU) properties used extensively in automotive seating application. The nature with which the energy is released considering the same material and varying the hardness directly contributes to the comfort analysis for automobile seating and vice versa. Two curves can define the same area but the loading and unloading trend for the two cases could be different and so be the riding comfort. A conclusion would be drawn by obtaining hysteresis loss rate by changing the different parameters (hardness, density). One parameter would be varied by keeping the others constant.
Technical Paper

Effect of Fabric Parameters on Phenomena of Electrostatic Charge Generation

2019-04-02
2019-01-0464
Electrostatic charge generation in fabric is a common phenomenon. This phenomenon of charge generation & transfer of the same to human body is more in case of fabrics made of polyester yarns due to interface property of the material. The charge generation may result in attraction of dust on the fabric surface, clinginess & may also result in uncomfortable shock to the human body. This situation is attributed to various parameters such as fabric construction, yarn properties, yarn finish & various coating on the yarn. Since, polyester fabric is prime material used in seating; there have been many incidences of rubbing of seat fabric to human body, resulting in generation of static charge. This study focuses on understanding the effect of various fabric parameters on electrostatic charge generation. The study will also look into various potential solutions to reduce the charge generation with their merits and demerits.
Technical Paper

Design of Front Structure of Vehicle for Pedestrian Headform Protection

2017-03-28
2017-01-1298
Vehicle Hood being the face of a passenger car poses the challenge to meet the regulatory and aesthetic requirements. Urge to make a saleable product makes aesthetics a primary condition. This eventually makes the role of structure optimization much more important. Pedestrian protection- a recent development in the Indian automotive industry, known for dynamics of cost competitive cars, has posed the challenge to make passenger cars meeting the regulation at minimal cost. The paper demonstrates structure optimization of hood and design of peripheral parts for meeting pedestrian protection performance keeping the focus on low cost of ownership. The paper discusses development of an in-house methodology for meeting Headform compliance of a flagship model of Maruti Suzuki India Ltd., providing detailed analysis of the procedure followed from introduction stage of regulatory requirement in the project to final validation of the engineering intent.
Technical Paper

Optimization of Radiator Fan for NVH Improvement

2017-01-10
2017-26-0210
With the development of automobile industry, customer awareness about NVH (Noise, Vibration and Harshness) levels in passenger vehicles and demands for improving the riding comfort has increased. This has prompted automobile OEMs to address these parameters in design stage by investing resources in NVH research and development for all components. Better NVH of Radiator Fan Module (RFM) is one of the parameters which contributes to cabin comfort. The basic objective of RFM is to meet engine heat rejection requirements with optimized heat transfer and air flow while maintaining NVH within acceptable levels. The rotating fan (generally driven by an electric motor), if not balanced properly, can be a major source of vibration in the RFM. The vibration generated thus, can be felt by customer through the vehicle body.
Technical Paper

Fuel Efficient Algorithm for Climate Control in Next Generation Vehicles

2017-01-10
2017-26-0370
Automobile industry is shifting its focus from conventional fuel vehicles to NexGen vehicles. The NexGen vehicles have electrical components to propel the vehicle apart from mechanical system. These vehicles have a goal of achieving better fuel efficiency along with reduced emissions making it customer as well as environment friendly. Idle start-stop is a key feature of NexGen vehicles, where, the Engine ECU switches to engine stop mode while idling to cut the fuel consumption and increase fuel efficiency. Engine restarts when there is an input from driver to run the vehicle. There is always a clash between the Engine ECU and automatic climate control unit (Auto-AC) either to enter idle stop mode for better fuel efficiency or inhibit idle stop mode to keep the compressor running for driver comfort. This clash can be resolved in two ways: 1 Hardware change and, 2 Software change Hardware change leads to increase in cost, validation effort and time.
Technical Paper

Effect of Beam Layout and Specification on Side Door Strength of Passenger Cars: An Experimental Approach to Analyze Its Effect and Contribution to Door Strength.

2017-01-10
2017-26-0023
Risk of injury to occupant in the event of side impact is considerably higher compared to frontal or rear impact as the energy absorbing zones at the front and rear of vehicle is high whereas limited space is available to dissipate the impact energy in the event of side impact. In such scenario strength of side door plays an important role in protecting the occupant. Side door beam in door structure contributes significantly towards the lateral stiffness and plays dominant role in limiting the structural intrusion into passenger compartment. Hence it is interesting to understand the effect of beam specification and orientation on side door strength. Since these factors not only affect the strength but also the cost and weight targets, their study and analysis is important with respect to door design This paper showcases the effect of beam layout and its specifications on the overall strength of the door with an experimental approach using physical test.
Technical Paper

Aerodynamic Development of Maruti Suzuki Vitara Brezza using CFD Simulations

2017-01-10
2017-26-0268
Recent automotive trend shows that customer demand is moving towards bigger size vehicle with more comfort, space, safety, feature and technology. Global market of SUV is projected to surpass 21 million units by 2020. Despite economic slowdown and weak new car sales worldwide, India and China will continue to be primary market for SUV due to sheer size of population, urban expanding middle class and larger untapped rural market. However, stricter emission norms push for clean and green technology and unfavorable policy towards use of diesel vehicle has made the SUV design very challenging due to conflicting needs. Due to bigger size of vehicle, aerodynamic design plays an important role in achieving emission targets and higher fuel efficiency. This paper highlights the aerodynamic development of Maruti Suzuki Vitara Brezza, which is an entry level SUV vehicle with high ground clearance of 198 mm and best in class fuel economy of 24.3 kmpl.
Technical Paper

Development of Real Time Mild Hybrid Simulation Model using Battery in Loop

2016-02-01
2016-28-0031
Battery modeling is of major concern going forward for Hybrid Electric Vehicle (HEV) and Electric vehicle (EV) modeling. The major issue lies in characterizing the battery power, Charge acceptance and reaction to sudden load changes (transient behavior) in relation to battery’s State of Charge (SOC). In particular modeling the battery is challenging task as it requires a lot of test data to understand and validate modeled chemical and electrical characteristics in various operating conditions. Hence, the one of the ways of simulating Battery based Hybrid System is to use battery Hardware-in-the-Loop Simulation (HILS) or simply known as Battery-in-Loop (BIL). With this approach hybrid vehicle or more precisely battery management system (BMS) development time and cost can be significantly reduced by eliminating the detailed battery modeling. To understand the effectiveness of this approach, Battery Hardware-in-Loop test setup was developed.
X