Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Characteristics of Nozzle Internal Flow and Near-Field Spray of Multi-Hole Injectors for Diesel Engines

2015-09-01
2015-01-1920
The combustion process, emission formation and the resulting engine performance in a diesel engine are well known to be governed mainly by spray behaviors and the consequent mixture formation quality. One of the most important factors that affect the spray development is the nozzle configuration. Originally, single-hole diesel injector is usually applied in fundamental research to provide insights into the spray characteristics. However, the spray emerging from a realistic multi-hole injector approaches the practical engine operation situation better. Meanwhile, previous research has shown that the reduced nozzle hole diameter is effective for preparing more uniform mixture. In the current paper, a study about the effects of nozzle configuration and hole diameter on the internal flow and spray properties was conducted in conjunction with a series of experimental and computational methods.
Technical Paper

An Approach for Improving Correlation of Solid Finite Element Models

2005-05-16
2005-01-2370
The quest to simulate noise problems has led to the building of larger and more detailed finite element models in order to perform vibration solutions to higher frequencies. This leads to the building of solid finite element models of complex geometries, such as castings, which might previously have contained less detail or even been built with shell elements. Unfortunately, detailed geometric representations used to build models do not always agree with as built parts and lead to discrepancies between analysis results and test data. This paper presents an approach that reduces the time and cost necessary to identify these differences.
Technical Paper

Experimental Transfer Path Analysis of Gear Whine

2005-05-16
2005-01-2288
Conventionally, the effort of gear whine reduction has focused on minimizing the transmission error generated in automobile transmission. In mean time, as demands on gear whine reduction increased, the need of controlling noise transfer path was arisen because transmission error turns into interior noise in those paths [1-2]. In this paper, we provide experimental technologies to clarify the noise transfer path which dominants high frequency gear whine from experimental point of view.
Technical Paper

Analysis of High Frequency Gear Whine Noise by Using an Inverse Boundary Element Method

2005-05-16
2005-01-2304
Some of the frequencies of transmission gear whine noise reach up to several kHz. High-frequency gear whine noise is mostly transmitted by air (airborne); therefore, it is critical to reduce transmission radiation noise. This paper presents how to solve the problem of high-frequency noise in the range of 2.0 - 4.1kHz by experiment using Inverse Boundary Element Method (IBEM) and by computer simulation using Boundary Element Method (BEM).
Technical Paper

Developed Technologies of the New Rotary Engine (RENESIS)

2004-03-08
2004-01-1790
The newly developed rotary engine has achieved major progress in high performance, improved fuel economy and clean exhaust gas by innovative action. The engine of the next generation is named RENESIS, which stands for “The RE (Rotary Engine)'s GENESIS” or the rotary engine for the new millennium. The peripheral exhaust port of the previous rotary engine is replaced by a side exhaust port system in the RENESIS. This allows for an increase in the intake port area, thus producing higher power. Exhaust opening timing is retarded to improve thermal efficiency. The side exhaust port also allows reducing the internal EGR, stabilizing the combustion at idling. The improved thermal efficiency and the stabilized idle combustion result in higher fuel economy. In addition, the side exhaust port allows a reduction of the HC mass, realizing reduced exhaust gas emission.
Technical Paper

Aggressivity-Reducing Structure for Large Vehicles in Frontal Car-to-Car Crash

2004-03-08
2004-01-1163
This paper clarifies aggressivity reduction approach for MPV, Multi-Purpose Vehicles, derived from large passenger vehicles toward small passenger vehicles. The effects of aggressivity-reducing approach were measured through full-frontal rigid barrier crash simulations with TRL aluminum honeycomb by Finite Element Method. The front-end structures of large vehicles studied in this paper based on this aggressivity reduction approach show good front-end homogeneity and low average height of force. The structures were also found to effectively reduce aggressivity toward small vehicles by car-to-car simulation. However, there are some cases where the effect was influenced by overlap ratios. From this result, overlap ratio is considered to be one of the important factors to improve compatibility performance.
Technical Paper

Development of Integrated Functions Module Carriers by Injection Molding with Long Glass Fiber Reinforced Polypropylene

2003-10-27
2003-01-2810
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Atenza / Mazda6, Demio / Mazda2, RX-8 employs the module carriers using this material, resulting in dramatic weight and cost savings. (Fig. 1)
Technical Paper

Development of Shape Fixing Press Forming Technology for High Strength Steel Sheet

2003-10-27
2003-01-2825
New press forming method was developed for ensuring shape-accuracy of draw parts with high strength steel sheet(HSS) of very high tensile strength such as 780MPa. In the new method, step drawing method was combined with crash forming method by applying cam flange die structure to drawing dies. Furthermore, the die structure in the method is simple. At the trial press-forming by the model die even with 780MPa high strength steel sheets, the side wall warps in particular were restrained within a specified tolerance, that is ±0.00067[1/mm] of the variation of curvature(Δ 1/ ρ). Now the method is applied to press-forming some automotive body parts, such as front side member, etc.
Technical Paper

Development of Module Carriers by Injection Molding with Long Glass-Fiber Reinforced Polypropylene

2003-03-03
2003-01-0791
We have developed injection molding technologies consist of a new high-strength long-glass fiber reinforced polypropylene (PPLGF). They are key technologies of new modular design for substantial reductions of weight and cost, offering integrated functionality. The strength of injection molded parts are three times stronger than that of the conventional material. This technology makes it possible to replace parts from steel stamping and press molded glass-mat reinforced polypropylene. The front end and door modules of Mazda 6 employ the module carriers using this material, resulting in dramatic weight and cost savings.
Technical Paper

Oxidation Stability of Automatic Transmission Fluids -A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2001-05-07
2001-01-1991
The International Lubricant Standardization and Approval Committee (ILSAC) ATF subcommittee members have compared the two oxidation bench test methods, Aluminum Beaker Oxidation Test (ABOT) and Indiana Stirring Oxidation Stability Test (ISOT), using a number of factory-fill and service-fill ATFs obtained in Japan and in the US. In many cases, the ATFs were more severely oxidized after the ABOT procedure than after the same duration of the ISOT procedure. The relative severity of these two tests was influenced by the composition of the ATFs. The bench test oxidation data were compared with the transmission and the vehicle oxidation test data.
Technical Paper

Introduction of Gear Noise Reduction Ring by Mechanism Analysis Including FEM Dynamic Tuning

2001-03-05
2001-01-0865
Reduction of transmission error by gear tooth profile optimization and tuning of gear resonance modes are known as effective methods for gear noise reduction. This paper concentrates on structuring a process for reducing gear noise using the latter method. The procedure comprises a study of gear noise mechanism from transmission error to radiation noise, an application of Steyer's method in gear frequency analysis and implementation of an invented device called “noise reduction ring”. This inexpensive and practical ring reduces gear noise drastically by 10dB, which is predicted by the simulation and verified by the experiment.
Technical Paper

Thixomolding® of Magnesium Automotive Components

1998-02-23
980087
Thixomolding® produces net-shape parts from Magnesium alloys in a single step process involving high speed injection molding of semi-solid thixotropic alloys. A description of the process and status of commercial developments will be presented.. The mechanical properties and microstructures of Thixomolded® AZ-91D magnesium materials will be presented. Tensile strengths of semi-solid AZ-91D at both room temperature and elevated temperatures ( 373K, 423K) are compared with die cast AZ-91D. Data on enhanced creep properties of Thixomolded® AZ91-D alloy relative to die cast AZ-91D will be examined with respect to relative changes in microstructural features. Controlling the percent solids in the semi-solid state prior to injection molding can lead to improved creep performance for use in net-shape automotive components.
Technical Paper

The Evaluation of the Influence of Vehicle Crashworthiness and Interior Parts on Occupant Injury

1989-09-01
892009
In order to secure effective occupant protection at vehicle collisions, it is necessary to conduct close examination into vehicle crash characteristics as well as interior parts, etc. This paper analyzes the behavior of a HYBRID III dummy restrained by three point seatbelt using MVMA2D computer simulation program at a 35 mph vehicle frontal barrier crash. As a result, it is found for good agreement between experiment and simulation that the exact input data of successive toeboard intrusion play an important role. As for the parametric study on vehicle crashworthiness, the authors propose the convenient method to represent the actual crash pulse by two simplified trapezoids. Then using these trapezoids, the parametric study clarifies the influence of vehicle deformation characteristics as well as the interior parts on dummy injury.
Technical Paper

Development of a Low Pumping Loss Rotary Engine with a New Port Mechanism

1989-08-01
891677
The thermal efficiency of a three-rotor rotary engine (RE) was improved by a reduction in the pumping losses. These pumping losses were reduced by using a new port mechanism. The port mechanism utilized was an indirect recirculation type of late intake port closing. It was equipped with a recirculation chamber outside of the housings. This chamber interconnected the recirculation ports within each housing. This port mechanism yielded three main benefits 1. A Considerable reduction in the pumping losses. 2. A uniformly distributed air-fuel mixture in each housing. 3. A limited amount of residual gas in the housing. This residual gas was under specific pulsations by the recirculation chamber thus preventing deterioration in combustion under light loads. The above phenomena were clarified by experiments and simulations. The possibility of a reduction in exhaust emissions was also investigated.
X