Refine Your Search

Topic

Author

Search Results

Technical Paper

Study on Novel Combustion Technologies to Achieve “High-heels” Heat Release Rate Profile in a Higher-compression-ratio Diesel Engine

2023-09-29
2023-32-0077
For further increase in thermal efficiency of heavy-duty diesel engines, flexible regulation of the heat release rate (HRR) profile combined with higher compression ratio could have more rooms to improve indicated thermal efficiency by overcoming various drawbacks relevant to higher compression ratio. A new ideal HRR profile, which starts as a kind of delta shape to fulfil the isobaric cycle from top-dead-center (TDC) and is followed by the significant increase in HRR to reach the maximum cylinder pressure in the retarded timing, was proposed. We call it as ‘High-heels’ HRR profile from its two-step-increase delta shape. To confirm the potential of the ideal HRR profile by utilizing a single- cylinder heavy-duty diesel engine, a variable fuel injection rate equipment, novel combustion chamber designs, and an offset orifices nozzle were investigated as the technologies for modifying HRR profile.
Technical Paper

Study of Higher Alcohol Potential as a Drop-In Fuel for a High Thermal Efficiency Heavy-Duty Diesel Engine

2023-08-28
2023-24-0049
To reduce carbon dioxide (CO2) emissions from heavy-duty diesel engines down to zero until 2050, alternative powertrain strategies have been proposed in lieu of the improvements in internal combustion engines (ICEs). However, total amount of renewable electricity could be limited for the constructing infrastructure, the production of new battery and/or fuel cell vehicles and the operation of them compared with the growing demand of transportation in the future. Therefore, drastic improvement in transport efficiency with suppressing the increase of total CO2 emissions is essential. From these points of view, extremely high efficiency ICEs, combined or at least compatible with carbon neutral or renewable fuels having the capability of drop-in into the conventional fuels, should be attracted attention. Nevertheless, there have been few studies on the effects of fuel properties for further improving fuel consumption of diesel ICEs.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Journal Article

An Experimental Study on Relationship between Lubricating Oil Consumption and Cylinder Bore Deformation in Conventional Gasoline Engine

2009-04-20
2009-01-0195
It is well known that lubricating oil consumption (LOC) is much affected by the cylinder bore deformation occurring within internal combustion engines. There are few analytical reports, however, of this relationship within internal combustion engines in operation. This study was aimed at clarifying the relationship between cylinder bore deformation and LOC, using a conventional in-line four-cylinder gasoline engine. The rotary piston method developed by the author et al. was used to measure the cylinder bore deformation of the engine’s cylinder #3 and cylinder #4. In addition, the sulfur tracer method was applied to measure LOC of each cylinder. LOC was also measured by changing ring tension with a view to taking up for discussion how piston ring conforms to cylinder, and how such conformability affects LOC. Their measured results were such that the cylinder bore deformation was small in the low engine load area and large in the high engine load area.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Part 3: A Study of Friction and Lubrication Behavior for Gasoline Piston Skirt Profile Concepts

2009-04-20
2009-01-0193
This paper deals with the friction performance results for various new concept piston skirt profiles. The program was conducted under the assumption that friction performance varies by the total amount of oil available at each crank angle in each stroke and the instantaneous distribution of the oil film over the piston skirt area. In previous papers [1,2] it was that lower friction designs would be expected to show higher skirt slap noise. This paper discusses the correlation between friction and skirt slap for each new concept profile design. Finally, this paper explains the friction reduction mechanism for the test samples for each stroke of the engine cycle by observing the skirt movement and oil lubrication pattern using a visualization engine.
Technical Paper

Direct Observation of Clean Diesel Combustion using a Bore Scope in a Single Cylinder HDDE

2009-04-20
2009-01-0645
The bore scope system can visualize not only diesel combustion in the research engine but also in actual diesel combustion in a multi-cylinder engine. The experimental engine has 2.0-liter displacement and has an external supercharger with up to two times the boost pressure of the naturally aspirated engine condition. The video camera used for this study is nac GX-1. From observed data under the several experimental conditions such as increased injection pressures, swirl ratios, and EGR rates, the flame temperature and KL factor were obtained by two-color method analysis. The diesel combustion processes are understood well by analyzing high-speed movies of the diesel flame motion and its temperature. NOx and smoke are mutually related to maximum flame temperature even in an engine with low NOx emission and lean smoke. It is reconfirmed as necessary to maintain a maximum flame temperature of 2,000–2,200K to reduce emissions of NOx and smoke simultaneously.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

Measurement of Piston Skirt Oil-film Pressure under Piston Slap

2007-05-15
2007-01-2215
Using small thin-film pressure sensors deposited onto a piston skirt surface, oil-film pressure on the piston skirt surface is measured when piston slap noise is generated without affecting the surface geometry, stiffness and mass of the piston. Under a no-load firing engine condition and at low temperature, the measured oil-film pressure corresponded well to the measured acceleration of the cylinder liner, which is indicative of piston slap noise, confirming the validity of the present method. Moreover, the oil-film pressure distribution on the skirt surface was measured for different engine speeds and piston pin offsets, which enabled more insight to be provided into piston secondary motion than that by considering the effects of cylinder liner acceleration.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Part 2: The Effects of Lubricating Oil Film Thickness Distribution on Gasoline Engine Piston Friction

2007-04-16
2007-01-1247
Due to increasing economic and environmental performance requirements of internal combustion engines, piston manufacturers now focus more on lower friction designs. One factor strongly influencing the friction behavior of pistons is the dynamic interaction between lubricating oil, cylinder bore and piston. Therefore, the dynamic effect of the oil film in the gap between the liner and piston has been studied, using a single cylinder engine equipped with a sapphire window. This single cylinder engine was also equipped with a floating liner, enabling real-time friction measurement, and directly linking the oil film behavior to friction performance of pistons.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
Technical Paper

HCCI Combustion Characteristics of Hydrogen and Hydrogen-rich Natural Gas Reformate Supported by DME Supplement

2006-04-03
2006-01-0628
Hydrogen is expected to be a clean and energy-efficient fuel for the next generation of power sources because it is CO2-free and has excellent combustion characteristics. In this study, an attempt was made to apply Homogeneous Charge Compression Ignition (HCCI) combustion to hydrogen with the aim of achieving low oxides of nitrogen (NOx) emissions and high fuel economy with the assistance of the di-methyl-ether (DME) fuel supplement. As a result, HCCI combustion of hydrogen mixed with 25 vol% DME achieved approximately a 30% improvement in fuel economy compared with HCCI of pure DME and spark-ignited lean-burn combustion of pure hydrogen under almost zero NOx emissions and low hydrocarbon (HC) emissions. This is attributed to control of the combustion process to attain the optimum onset of combustion and to a reduction of cooling losses.
Technical Paper

Part 1: Piston Friction and Noise Study of Three Different Piston Architectures for an Automotive Gasoline Engine

2006-04-03
2006-01-0427
The objective was to rank piston friction and noise for three piston architectures at three cold clearance conditions. Piston secondary motion was measured using four gap sensors mounted on each piston skirt to better understand the friction and noise results. One noticeable difference in friction performance from conventional designs was as engine speed increased the friction force during the expansion stroke decreased. This was accompanied by relatively small increases in friction force during the other strokes so Friction Mean Effective Pressure (FMEP) for the whole cycle was reduced. Taguchi's Design of Experiment method was used to analyze the variances in friction and noise.
Technical Paper

Improvement of Piston Lubrication in a Diesel Engine By Means of Cylinder Surface Roughness

2004-03-08
2004-01-0604
Aiming at the improvement in piston lubrication and the reduction of piston friction loss under this study, piston friction forces of cylinders with different surface roughness and treatment methods have been measured by means of a floating liner method, and the piston surface conditions have been also observed. As a result, it is found that the piston lubrication can be markedly improved by reducing the cylinder surface roughness. It is also verified that the deterioration in lubrication can be reduced even if some low viscosity oil is used, and the effect on the friction loss reduction becomes greater by reducing the piston surface roughness. On the other hand, it is found that many small vertical flaws are generated on the cylinder surface by reducing the surface roughness. In order to cope with this problem, etching and DLC (Diamond Like Carbon) coating have been tested as the surface treatments. As a result, it is confirmed that DLC coating is effective for the above.
Technical Paper

Characteristics of Electrode Poisoning by Carbon Monoxide and/or Hydrogen Sulfide in the Anode Feed of Polymer Electrolyte Fuel Cells as Analyzed by AC Impedance Spectroscopy

2004-03-08
2004-01-1467
The results of this study make clear the characteristics of electrode performance deterioration in terms of cell voltage reduction in polymer electrolyte fuel cells (PEFCs) caused by the presence of certain quantities of carbon monoxide and/or hydrogen sulfide in the anode feed. AC impedance measurements of the anode and cathode potentials revealed that both electrode potentials showed deterioration in the presence of each type of poisoning gas. This suggests that the poisoning gases permeated the electrolyte membrane and transferred to the cathode, causing performance deterioration by poisoning the catalyst. In addition, AC impedance measurements indicated that the presence of hydrogen sulfide in the anode feed increased the membrane impedance, thus implying some poisoning effect even on the electrolyte membrane.
Technical Paper

Reduction of Cooling Loss in Hydrogen Combustion by Direct Injection Stratified Charge

2003-10-27
2003-01-3094
Hydrogen can be readily used in spark-ignition engines as a clean alternative to fossil fuels. However, a larger burning velocity and a shorter quenching distance for hydrogen as compared with hydrocarbons bring a larger cooling loss from burning gas to the combustion-chamber wall. Because of the large cooling loss, the thermal efficiency of a hydrogen-fueled engine is sometimes lower than that of a conventionally fueled engine. Therefore, the reduction of the cooling loss is very important for improving the thermal efficiency in hydrogen-combustion engines. On the other hand, the direct-injection stratified charge can suppress knocking in spark-ignition engines at near stoichiometric overall mixture conditions. Because this is attributed to a leaner end gas, the stratification can lead to a lowered temperature of burning gas around the wall and a reduced cooling loss.
Technical Paper

Development of a Technique to Predict Oil Consumption with Consideration for Cylinder Deformation - Prediction of Ring Oil Film Thickness and Amount of Oil Passing Across Running Surface under Cylinder Deformation -

2003-03-03
2003-01-0982
Although various factors affecting oil consumption of an internal combustion engine can be considered, a technique to predict the amount of oil consumed within a cylinder that passes across a running surface of a ring was developed in this study. In order to predict the effect of cylinder deformation on oil consumption, a simple and easy technique to calculate the oil film thickness in deformed cylinder was proposed. For this technique, the piston ring was assumed to be a straight beam, and the beam bends with ring tension, gas pressure, and oil film pressure. From the calculated oil film thickness, amount of oil passing across the running surface of the TOP ring and into the combustion chamber was calculated. The calculated results were then compared to the oil film thickness of the ring and oil consumption measured during engine operation, and their validity was confirmed.
X