Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Improved Coated Gasoline Particulate Filters for China 7 and US Tier 4 Legislations

2024-04-09
2024-01-2387
The impending emission regulations in both China (CN7) and the United States (Tier 4) are set to impose more stringent emission limits on hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM). CN7 places particular emphasis on reducing particulate number (PN) thresholds, while the forthcoming United States Tier 4 legislation is primarily concerned with reducing the allowable particulate matter (PM) to an assumed limit of 0.5 mg/mile. Given the more stringent constraints on both PN and PM emissions, the development of enhanced aftertreatment solutions becomes imperative to comply with these new regulatory demands. Coated Gasoline Particulate Filters (cGPFs) play a pivotal role as essential components for effective PN and PM abatement.
Technical Paper

Advanced Aftertreatment System Meeting Future HD CNVII Legislation

2024-04-09
2024-01-2379
Options for CNVII emission legislation are being widely investigated in a national program organized by China Vehicle Emission Control Center (VECC) since early 2020. It is foreseen that this possibly last legislation in China will have more stringent emission requirements compared to CNVI, including among other changes especially a further reduction of nitrogen oxide (NOx), inclusion of nitrous oxide (N2O) and sub-23 nm particle number (PN). This study investigates the technical feasibility to fulfill a CNVII emission legislation scenario, based on a modified CNVI 8 L engine operating under both cold and hot World Harmonized Transient Cycle (WHTC) and Low Load Cycle (LLC).
Technical Paper

Performance Evaluation Study to Optimize the NOx Conversion Efficiency of SDPF Catalyst for BS6 RDE/OBD2 Engine Application

2024-01-16
2024-26-0161
To meet future emission levels, the automotive industry is trying to reduce tailpipe emissions through both possible pathways, i.e. emission from engines as well as and the development of novel catalytic emission control concepts. The present study will focus on the close coupled SCR on Filter commonly known as SDPF which is a main pathway to reduce NOx along with particulate mass and number for light duty passenger cars and sport utility vehicles for BS 6 RDE/OBD 2 and future legislation like BS-7. The SDPF is a challenging technology as it is critical component in exhaust after treatment system involving in NOx and PM/PN reductions hence careful optimization of this technology is necessary in terms of space velocity requirements, temperature, feed NOx emission levels, particulate mass and ash holding capacities, NH3 storage on the SDPF, and back pressure.
Technical Paper

High-Porosity Honeycomb Substrate with Thin-Wall and High Cell Density Using for SCR Coating to Meet Worldwide Tighter Emission Regulations

2022-03-29
2022-01-0550
Selective catalyst reduction (SCR) using cordierite honeycomb substrate is generally used as a DeNOx catalyst for diesel engines exhaust in both on-road and commercial off-highway vehicles to meet today’s worldwide emission regulations. Worldwide NOx emission regulations will become stricter, as represented by CARB2027 and EuroVII. Technologies which can achieve further lower NOx emissions are required. Recently, several technologies, like increased SCR catalyst loading amount on honeycomb substrates, and additional SCR catalyst volume in positions closer to the engine are being considered to achieve ultra-low NOx emissions. However, undesirable pressure drop increase and enlarging after treatment systems will be caused by adopting these technologies. Therefore, optimization of the material and honeycomb cell structure for SCR is inevitable to achieve ultra-low NOx emissions, while minimizing any system drawbacks.
Journal Article

Catalysts for Post Euro 6 Plug-In Hybrid Electric Vehicles

2020-04-14
2020-01-0354
Due to benefits from the use of electric power, Hybrid Electric Vehicles (HEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) are regarded to be superior over conventional Internal Combustion Engine (ICE) only vehicles in fuel economy and emissions. However, recent studies find out that this is not always true. On certain conditions, hybrid vehicles can be even more polluted. In order to identify these challenges and develop catalysts to meet more stringent emission requirement in the future, e.g. Euro 7, for hybrid application, as a part of our xHEV project, this study includes exclusively extensive investigation on a latest Euro 6d temp Parallel PHEV.
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

Parametric Optimization of Planetary Carrier for Durability

2019-01-09
2019-26-0049
Planetary gear set is one of the most commonly used gear systems in automotive industry as they cater to high power density requirements. A simple planetary gear set consists of a sun gear, ring gear, planets and carrier which houses planet gears. Efficiency of a transmission is dependent upon performance of gear sets involved in power transfer to a great extent. Structural rigidity of a planetary carrier is critical in a planetary gear set as its deflection may alter the load distribution of gears in mesh causing durability and noise issues. Limited studies exist based on geometrical parameters of a carrier which would help a designer in selecting the dimensions at an early stage. In this study, an end to end automated FEA process based on DOE and optimization in Isight is developed. The method incorporates a workflow allowing for an update of carrier geometry, FE model setup, analysis job submission and post-processing of results.
Technical Paper

Development of Improved SCRonDPF Design for Future Tighter Regulations and Reduced System Packaging

2018-04-03
2018-01-0344
With the push towards more stringent on-road US heavy duty diesel regulations (i.e. HD GHG Phase 2 and the proposed ARB 20 mg/bhp-hr NOx), emission system packaging has grown critical while improving fuel economy and NOx emissions. The ARB regulations are expected to be implemented post 2023 while regulation for EU off-road segment will begin from 2019. The regulation, called Stage V, will introduce particle number (PN) regulation requiring EU OEMs to introduce a diesel particulate filter (DPF) while customer demands will require the OEMs to maintain current emission system packaging. A viable market solution to meet these requirements, especially for EU Stage V being implemented first, is a DPF coated with a selective catalyst reduction (SCR) washcoat (i.e. SCRonDPF).
Technical Paper

Particle Number Emission Reduction for GDI Engines with Gasoline Particulate Filters

2017-10-08
2017-01-2378
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit in EU of 6x10 sup 12 #/km, which will be further reduced by one order of magnitude to 6x10 sup 11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Technical Paper

Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles

2017-03-28
2017-01-0924
Recently, the European Union has adopted a new regulation on Real-Driving-Emissions (RDE) and also China is considering RDE implementation into new China 6 legislation. The new RDE regulation is focused on measuring nitrogen oxides (NOx) and particulate number (PN) emissions of both light-duty gasoline and diesel vehicles under real world conditions. A supplemental RDE test procedure was developed for European type approval, which includes on-road testing with cars equipped with portable emission measurement systems (PEMS). This new regulation will significantly affect the engine calibrations and the exhaust gas aftertreatment. In this study the impact of the new RDE regulation on two recent EU 6b certified turbocharged direct injected gasoline vehicles has been investigated. A comparison of several chassis dyno drive cycles with two new defined on-road RDE cycles was performed.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Evaluation of Hydrothermally Aged Vanadia SCR on High-Porosity Substrate

2016-10-17
2016-01-2320
Ammonia Selective Catalytic Reduction (SCR) is adapted for a variety of applications to control nitrogen oxides (NOx) in diesel engine exhaust. The most commonly used catalyst for SCR in established markets is Cu-Zeolite (CuZ) due to excellent NOx conversion and thermal durability. However, most applications in emerging markets and certain applications in established markets utilize vanadia SCR. The operating temperature is typically maintained below 550°C to avoid vanadium sublimation due to active regeneration of the diesel particulate filter (DPF), or some OEMs may eliminate the DPF because they can achieve particulate matter (PM) standard with engine tuning. Further improvement of vanadia SCR durability and NOx conversion at low exhaust gas temperatures will be required in consideration of future emission standards.
Technical Paper

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-09-01
2015-01-2018
Diesel engines are widely used to reduce CO2 emission due to its higher thermal efficiency over gasoline engines. Considering long term CO2 targets, as well as tighter gas emission, especially NOx, diesel engines must become cleaner and more efficient. However, there is a tradeoff between CO2 and NOx and, naturally, engine developers choose lower CO2 because NOx can be reduced by a catalytic converter, such as a SCR catalyst. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher engine out NOx emission and lower exhaust gas temperatures, close-coupled a diesel particulate filter (DPF) system with integration of SCR catalyst technology is preferred. For SCR catalyst activity, it is known that the catalyst loading amount has an influence on NOx performance, so a high SCR catalyst loading will be required.
Technical Paper

Synthetic Gas Bench (SGB) Tests Simulating Real and Dynamic Driving Conditions: A New and Cost Attractive Method for TWC Evaluation

2015-04-14
2015-01-1066
The introduction of vehicle emission and fuel economy standards (CO2) accelerates the introduction of new platform and powertrain combinations into the market place. All of these combinations will require unique exhaust gas aftertreatment systems that comply with the current emission legislation. The optimization of each unique aftertreatment solution requires the proper application of catalyst technologies at the lowest PGM concentrations. The optimization process needs to be fast, reliable, realistic and cost attractive. It is arguable that performing the aftertreatment optimization on a chassis dynamometer is variable, time consuming and expensive. This work demonstrates how a synthetic gas bench (SGB) can be used to simulate stoichiometric engine emissions and aftertreatment performance. The SGB procedure duplicates the vehicle NEDC engine-out emissions and catalyst heat-up profiles.
Technical Paper

Next Generation of Ceramic Wall Flow Gasoline Particulate Filter with Integrated Three Way Catalyst

2015-04-14
2015-01-1073
A Particle Number (PN) limit for Gasoline Direct Injection (GDI) vehicles was introduced in Europe from September 2014 (Euro 6b). In addition, further certification to Real Driving Emissions (RDE) is planned [1] [2], which requires low and stable emissions in a wide range of engine operation, which must be durable for at least 160,000 km. To achieve such stringent targets, a ceramic wall-flow Gasoline Particulate Filter (GPF) is one potential emission control device. This paper focuses on a catalyzed GPF, combining particle trapping and catalytic conversion into a single device. The main parameters to be considered when introducing this technology are filtration efficiency, pressure drop and catalytic conversion. This paper portrays a detailed study starting from the choice of material recipe, design optimization, engine bench evaluation, and final validation inside a standard vehicle from the market during an extensive field test up to 160,000 km on public roads.
Technical Paper

Advanced TWC Technology to Cover Future Emission Legislations

2015-04-14
2015-01-0999
The new emission regulations in Europe, EU 6 will promulgate more realistic driving conditions with more stringent HC, CO, NOx and particulate emissions. This legislation will also include the WLTP (Worldwide harmonized Light vehicles Test Procedure) cycle for CO2 measurements and a new requirement called “Real-Driving-Emissions” (RDE) as well. The RDE requirement is to ensure modern vehicles comply with the legislation under all conditions of normal driving. More robust aftertreatment solutions are needed to meet these new requirements. This work introduces an improved three-way catalyst (TWC) for gasoline engines for these new regulations. It is tested under static and dynamic conditions and on several engines and vehicles with various drive cycles. It offers better thermal stability combined with lower backpressure than former TWC generations.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Journal Article

Applicable Diesel Oxidation Catalyst for Multi-Diesel Exhaust System

2014-04-01
2014-01-1511
The diesel oxidation catalysts (DOC) having high purification performance to the exhaust gas at low temperatures were investigated. In this paper two main technological improvements from conventional DOC are shown. First is forming Pt/Pd composite particles in order to suppress sintering of precious metal under high thermal aging condition. This generating Pt/Pd composite and the effect were exemplified by TEM-EDS and XRD analysis. Second is adjusting electric charge of Pt/Pd surface to reduce interaction between Pt/Pd and carbon monoxide (CO) by modifying the support material components. Adjusting electric charge of Pt/Pd surface by applying new support material could cancel CO poisoning at Pt/Pd surface. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) studies suggested that improved support material is more suitable for CO oxidation at a low temperature based on the concept.
Technical Paper

Comprehensive Gasoline Exhaust Gas Aftertreatment, an Effective Measure to Minimize the Contribution of Modern Direct Injection Engines to Fine Dust and Soot Emissions?

2014-04-01
2014-01-1513
With the growing awareness about the presence of fine/ultra fine particulates in the ambient air and their negative impact on climate and health, some regions of the world have started to look closer at the contribution of road traffic. Since Gasoline engines, in particular when injecting fuel directly into the combustion chamber, proved to emit relevant numbers of particulates, even hardly visible, the growing share of Gasoline DI engines and their small size of particulate emissions is a concern. To address the same, the EU has already set limits for the particulate number with EU6 from 2015 onwards. The US considers setting challenging limits by particulate mass. Since mass of ultra fine particulates is very low and difficult to measure, experts investigate if a measurement by number might better address the particular concern. The implementation of a coated Particulate Filter enables meeting not only basic demands during traditional emission test cycles.
X