Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

Next Generation Diesel Particulate Filter for Future Tighter HDV/NRMM Emission Regulations

2022-03-29
2022-01-0545
Heavy Duty Vehicle (HDV) Diesel emission regulations are set to be tightened in the future. The introduction of PN PEMS testing for Euro VI-e, and the expected tightening of PM/NOx targets set to be introduced by CARB in the US beyond 2024 are expected to create challenging tailpipe PN conditions for OEMs. Additionally, warranty and the useful life period will be extended from current levels. Improved fuel efficiency (reduction of CO2) also remains an important performance criteria. Furthermore, future non-road diesel emission regulations may follow tighten HDV diesel emission regulations contents, and non-road cycles evaluation needs to be considered as well for future. In response to the above tightened regulation, for Diesel Particulate Filter (DPF) technologies will require higher PN filtration performance, lower pressure drop, higher ash capacity and better pressure drop hysteresis for improved soot detectability.
Technical Paper

Development of Advanced Non-Bypass Exhaust Heat Recovery System Using Highly Heat-Conductive SiC Honeycomb

2019-04-02
2019-01-0153
An exhaust heat recovery (EHR) system is an effective and attractive means of improving fuel economy and in-vehicle comfort, especially of hybrid cars in winter. However, many conventional bypass systems, which have a bypass pipe and bypass valve with a thermal actuator, are still large and heavy, and it is necessary not only to effectively improve the heat recovery but also to minimize the size and weight of EHR systems. Sakuma et al. reported new-concept heat exchangers and EHR systems using a highly heat-conductive SiC honeycomb, including a non-bypass system. However, since this non-bypass system always recovers heat from the exhaust gas, its heat recovery performance was set so as not to exceed the cooling capability of the radiator at a high engine load to prevent overheating of the vehicle.
Technical Paper

Development of Exhaust Heat Recovery System Using Highly Heat-Conductive SiC Honeycomb

2018-04-03
2018-01-0048
Reducing the fuel consumption of powertrains in internal combustion engines is still a major objective from an environmental viewpoint. Internal combustion engines waste a huge part of the fuel energy as heat in the exhaust line. Currently, exhaust heat recovery (EHR) systems are attracting attention as an effective means of reducing fuel consumption by collecting heat from waste exhaust gas and using it for rapid warming up of the engine and cabin heating [1, 2, 3, 4]. The benefits of the EHR system are affected by a trade-off between the efficacy of the recovered useful thermal energy and the adverse effect of the additional weight (heat mass) of the system [5]. Conventional EHR systems have a complex heat exchanger structure and a structure in which a bypass pipe and heat exchanger are connected in parallel, giving them a large size and heavy weight. We have developed a new-concept silicon carbide (SiC) heat exchanger with a dense SiC honeycomb.
Technical Paper

Newly Developed Cordierite Honeycomb Substrate for SCR Coating Realizing System Compactness and Low Backpressure

2012-04-16
2012-01-1079
Ammonia Selective Catalytic Reduction (SCR) and Lean NOx Trap (LNT) systems are key technologies to reduce NOx emission for diesel on-highway vehicles to meet worldwide tighter emission regulations. In addition DeNOx catalysts have already been applied to several commercial off-road applications. Adding the DeNOx catalyst to existing Diesel Oxidation Catalyst (DOC) and Diesel Particulate Filter (DPF) emission control system requires additional space and will result in an increase of emission system back pressure. Therefore it is necessary to address optimizing the DeNOx catalyst in regards to back pressure and downsizing. Recently, extruded zeolite for DeNOx application has been considered. This technology improves NOx conversion at low temperature due to the high catalyst amount. However, this technology has concerned about strength and robustness, because the honeycomb body is composed of catalyst.
Journal Article

New Design Concept for Diesel Particulate Filter

2011-04-12
2011-01-0603
The Inlet-Membrane DPF, which has a small pore size membrane formed on the inlet side of the body wall, has been developed as a next generation diesel particulate filter (DPF). It simultaneously achieves low pressure drop, small pressure drop hysteresis, high robustness, and high filtration efficiency. Low pressure drop improves fuel economy. Small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between pressure drop and accumulated soot mass improves the accuracy of soot mass detection by means of the pressure drop values. The Inlet-membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performance was evaluated using full block samples in 2009.
Technical Paper

Filtration Behavior of Diesel Particulate Filters (2)

2007-04-16
2007-01-0923
Due to its better fuel efficiency and low CO2 emissions, the number of diesel engine vehicles is increasing worldwide. Since they have high Particulate Matter (PM) emissions, tighter emission regulations will be enforced in Europe, the US, and Japan over the coming years. The Diesel Particulate Filter (DPF) has made it possible to meet the tighter regulations and Silicon Carbide and Cordierite DPF's have been applied to various vehicles from passenger cars to heavy-duty trucks. However, it has been reported that nano-size PM has a harmful effect on human health. Therefore, it is desirable that PM regulations should be tightened. This paper will describe the influence of the DPF material characteristics on PM filtration efficiency and emissions levels, in addition to pressure drop.
Technical Paper

Influence of Cell Shape Between Square and Hexagonal Cells

2003-03-03
2003-01-0661
Developing ultra thin wall ceramic substrates is necessary to meet stricter emissions regulations, in part because substrate cell walls need to be thinner in order to improve warm-up and light-off characteristics and lower exhaust system backpressure. However, the thinner the cell wall becomes, the poorer the mechanical and thermal characteristics of the substrate. Furthermore, the conditions under which the ultra thin wall substrates are used are becoming more severe. Therefore both the mechanical and thermal characteristics are becoming important parameters in the design of advanced converter systems. Whereas square cells are used world-wide in conjunction with oxidation and/or three-way catalysts, hexagonal cells, with features promoting a homogeneous catalyst coating layer, have found limited use as a NOx absorber due to its enhanced sulfur desorption capability.
Technical Paper

The Effect of SiC Properties on the Performance of Catalyzed Diesel Particulate Filter(DPF)

2003-03-03
2003-01-0383
The DPF(Diesel Particulate Filter) has been established as a key technology in reducing diesel PM emission. Also Catalyzed-DPF Systems are viewed as the next generation DPF System in the automotive sector, replacing the current Fuel Additive System. The performance requirements of the DPF-equipped vehicle are good fuel economy, good driving performance, high PM regeneration performance of accumulated soot and high durability. In this paper the effect of Catalyzed-DPF characteristics, such as porosity, pore size, cell structure and catalyst loading have been defined on pressure drop, filtration efficiency, regeneration efficiency and regeneration behavior.
Technical Paper

Application of Advanced Three-Way Catalyst Technologies on High Cell Density Ultra Thin-Wall Ceramic Substrates for Future Emission Legislations

2001-03-05
2001-01-0924
The future emission limits for gasoline fuelled passenger cars require more and more efficient exhaust gas aftertreatment devices - the catalytic converter being one essential part of the complex system design. The present paper summarizes the results of several basic research programs putting major emphasis on the application of highly sophisticated three-way catalyst technologies being taylored for the utilization on ultra thin-wall ceramic substrates. In the first part of the investigation the following effects were examined in detail: Different washcoat loadings at constant PGM-loadings Different volumes of catalysts for constant amounts of PGM and washcoat Similar washcoat technologies at different ratios of WC-loading to precious metal concentration in the washcoat.
Technical Paper

Real-Time On-Board Measurement of Mass Emission of NOx, Fuel Consumption, Road Load, and Engine Output for Diesel Vehicles

2000-03-06
2000-01-1141
Regulatory compliance measurements for vehicle emissions are generally performed in well equipped test facilities using chassis dynamometers that simulate on-road conditions. There is also a requirement for obtaining accurate information from vehicles as they operate on the road. An on-board system has been developed to measure real-time mass emission of NOx, fuel consumption, road load, and engine output. The system consists of a dedicated data recorder and a variety of sensors that measure air-to-fuel ratios, NOx concentrations, intake air flow rates, and ambient temperature, pressure and humidity. The system can be placed on the passenger seat and operate without external power. This paper describes in detail the configuration and signal processing techniques used by the on-board measurement system. The authors explain the methods and algorithms used to obtain (1) real-time mass emission of NOx, (2) real-time fuel consumption, (3) road load, and (4) engine output.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

1998-02-01
980170
A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
Technical Paper

Selective Heat Insulation of Combustion Chamber Walls for a DI Diesel Engine with Monolithic Ceramics

1989-02-01
890141
The engine performance and emissions characteristics of a single-cylinder DI diesel engine were experimentally investigated. The combustion chamber walls of the engine were thermally insulated with ceramic materials of SSN (Sintered Silicon Nitride) and PSZ (Partially Stabilized Zirconia). Fuel economy and emissions characteristics were improved by insulating selected locations of the combustion chamber walls. The selective insulation helped to create activated diffusion combustion and resulted in more efficient use of the intake air.
Technical Paper

Effect of Cell Structure on Regeneration Failure of Ceramic Honeycomb Diesel Particulate Filter

1987-02-01
870010
In applying ceramic honeycomb wall flow type filters to the after-treatment systems of diesel particulate from engines, the melting and thermal shock failures of ceramic diesel particulate filters (DPF) have been considered as one of the most significant issues during regeneration. This paper gives the results of experiments on the effects of cell structure i.e., wall thickness and cell density, on the melting and thermal shock regeneration failure of DPF and proposes an optimized cell structure for DPF in terms of the regeneration failure and the pressure drop which is also considered to be one of the especially important issues in fuel economy for heavy duty vehicle application.
X