Refine Your Search

Topic

Author

Search Results

Technical Paper

Ice Crystal Environment - Modular Axial Compressor Rig: Comparisons of Ice Accretion for 1 and 2 Stages of Compression

2023-06-15
2023-01-1397
In 2021 the Federal Aviation Administration in collaboration with the National Research Council of Canada performed research on altitude ice crystal icing of aircraft engines using the modular compressor rig, ICE-MACR, in an altitude wind tunnel. The aim of the research campaign was to address research needs related to ice crystal icing of aircraft engines outlined in FAA publication Engine Ice Crystal Icing Technology Plan with Research Needs. This paper reports the findings on ice accretion from a configuration of ICE-MACR with two compression stages. Inherent in two-stage operation is not just additional fracturing and heating by the second stage but also higher axial velocity and potentially greater centrifuging of particles. These factors influence the accretion behavior in the test article compared to single stage accretion.
Technical Paper

Aluminum Sample Characterization on the NRC AIWT Ice Adhesion Spin Rig

2023-06-15
2023-01-1417
This paper presents the adhesion strength of ice on sanded and machine-finished aluminum test coupons as measured using the National Research Council of Canada (NRC) Altitude Icing Wind Tunnel (AIWT) spin rig. This rig is used to evaluate commercial and internally-developed coatings for low-adhesion properties, and the performance of ice on aluminum is required as a baseline to compare the coatings against. The tests are performed over a range of aerodynamic and icing cloud conditions, including variations in static air temperature and exposure time (and therefore accumulated ice mass). The data analysis includes an evaluation of the uncertainty in the results based on the measured ice mass repeatability and the measured shear stress repeatability.
Technical Paper

Low-Adhesion Surface Evaluation on an Airfoil in the NRC AIWT

2023-06-15
2023-01-1447
The performance of low-adhesion surfaces in a realistic, in-flight icing environment with supercooled liquid droplets is evaluated using a NACA 0018 airfoil in the National Research Council of Canada Altitude Icing Wind Tunnel. This project was completed in collaboration with McGill University, the University of Toronto and the NRC Aerospace Manufacturing Technologies Centre in March 2022. Each collaborator used significantly different methods to produce low-adhesion surface treatments. The goal of the research program was to demonstrate if the low-adhesion surfaces reduced the energy required to de-ice or anti-ice an airfoil in an in-flight icing environment. Each collaborator had been developing their own low-adhesion surfaces, using bench tests in cold rooms and a spin rig in the wind tunnel to evaluate their performance. The most promising surface treatments were selected for testing on the airfoil.
Technical Paper

Planar Microwave Sensor for Localized Ice and Snow Sensing

2023-06-15
2023-01-1432
Ice and snow accretion on aircraft surfaces imposes operational and safety challenges, severely impacting aerodynamic performance of critical aircraft structures and equipment. For optimized location-based ice sensing and integrated ‘smart’ de-icing systems of the future, microwave resonant-based planar sensors are presented for their high sensitivity and versatility in implementation and integration. Here, a conformal, planar complementary split ring resonator (CSRR) based microwave sensor is presented for robust detection of localized ice and snow accretion. The sensor has a modified thick aluminum-plate design and is coated with epoxy for greater durability. The fabricated sensor operates at a resonant frequency of 1.18 GHz and a resonant amplitude of -33 dB. Monitoring the resonant frequency response of the sensor, the freezing and thawing process of a 0.1 ml droplet of water is monitored, and a 60 MHz downshift is observed for the frozen droplet.
Technical Paper

Comparison of Freeze-Out versus Grind-Out Ice Crystals for Generating Ice Accretion Using the ICE-MACR

2023-06-15
2023-01-1418
Since the introduction of ice crystal icing certification requirements [1], icing facilities have played an important role in demonstrating compliance of aircraft air data probes, engine probes, and increasingly, of turbine engines. Most sea level engine icing facilities use the freezing-out of a water spray to simulate ice crystal icing conditions encountered at altitude by an aircraft in flight. However, there are notable differences in the ice particles created by freeze-out versus those observed at altitude [2, 3, 4]. Freeze-out crystals are generally spherical as compared to altitude crystals which have variable crystalline shapes. Additionally, freeze-out particles may not completely freeze in their centres, creating a combination of super-cooled liquid and ice impacting engine hardware. An alternative method for generating ice crystals in a test facility is the grinding of ice blocks or cubes to create irregular shaped crystals.
Technical Paper

Thermo-Mechanical Fatigue (TMF) Life of Ductile SiMo Cast Iron with Aluminum Addition

2021-04-06
2021-01-0281
Strain controlled thermo-mechanical fatigue (TMF) tests were conducted on a high Silicon ductile cast iron (SiMo) as the baseline material and a similar SiMo cast iron with aluminum addition (SiMoAl). The much improved fatigue life with aluminum addition is analyzed using the integrated creep-fatigue theory (ICFT) in combination with the metallurgical analysis on the tested coupons. Addition of about 3 wt.% Aluminum significantly improved TMF life of the SiMo cast iron. The results are explained by elimination of brittleness at middle temperature range, the higher flow stress, lower creep rate and higher oxidation resistance from Al addition.
Technical Paper

Validation and Instrumentation of a Small Modular Multi-Stage Axial Compressor for Ice Crystal Icing Research

2019-06-10
2019-01-1940
The National Research Council of Canada (NRC) has undergone the development of a Small Axial Compressor Rig for modelling altitude ice accretion in aircraft engines. The rig consists of two axial compressor stages measuring approximately 150mm in diameter, an extension duct to allow residence time for partial melting of ice crystals and a test piece. The axial compressor stages are intended to provide realistic engine conditioning such as fracture, pressure rise, temperature rise and centrifuging of glaciated ice crystals entering the rig. The rig was designed for use in altitude icing wind tunnels such as the NRC’s altitude icing wind tunnel (AIWT), research altitude test facility (RATFac.), and those of other organization such as NASA Glenn and Technical University of Braunshweig. Previous development work [1] provided partial validation of the aerodynamic performance of just the first compressor stage at 90% power.
Technical Paper

Thermo-Mechanical Fatigue Testing of Welded Tubes for Exhaust Applications

2018-04-03
2018-01-0090
Selected ferritic stainless steel sheets for exhaust applications were tested under thermo-mechanical fatigue (TMF) condition in the temperature range of 400-800 °C with partial constraint. Straight welded tubes were used as the testing coupons to withstand large compression without buckling, and to understand the effect of welding as well. Repeated tests confirmed the observed failure scenario for each material type. The hysteresis loop behaviors were also simulated using the mechanism-based integrated creep and fatigue theory (ICFT) model. Although more development work is needed, for quick material screening purpose this type of testing could be a very cost effective solution for materials and tube weld development for exhaust applications.
Technical Paper

Development of a Modular, Dry-Running Bowditch Piston with Efficient Window Cleaning

2018-04-03
2018-01-0635
Optically-accessible engines provide valuable insight into in-cylinder combustion mechanisms and are widely considered an essential tool in fundamental internal combustion engine research. Here, a 2-piece Bowditch-type optical piston is developed as a replacement for a single-piece piston used in a 2 L, heavy-duty compression-ignition engine, which is convertible for use in both an optical and all-metal configuration. This piston was designed to provide long measurement durations, to simplify cleaning of the piston window, and to facilitate changes in piston crown geometry. A 2-piece piston architecture allows application of different piston bowl, crown, and compression ring geometries with minimal manufacturing and design cost. It was experimentally found that the cyclic loading experienced by piston rings permits the use of a lower grade material than plain bearing theory predicts.
Technical Paper

Development of a Research-Oriented Cylinder Head with Modular Injector Mounting and Access for Multiple In-Cylinder Diagnostics

2017-09-04
2017-24-0044
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
Technical Paper

Aluminum Extrusions for Automotive Crash Applications

2017-03-28
2017-01-1272
One of the main applications for aluminum extrusions in the automotive sector is crash structures including crash rails, crash cans, bumpers and structural body components. The objective is usually to optimize the energy absorption capability for a given structure weight. The ability to extrude thin wall multi-void extrusions contributes to this goal. However, the alloy used also plays a significant role in terms of the ability to produce the required geometry, strength - which to a large extent controls the energy absorption capability and the “ductility” or fracture behavior which controls the strain that can be applied locally during crush deformation before cracking. This paper describes results of a test program to examine the crush behavior of a range of alloys typically supplied for automotive applications as a function of processing parameters including artificial ageing and quench rate.
Technical Paper

In-Cabin Aeroacoustics of a Full-Scale Transport Truck

2016-09-27
2016-01-8143
The noise generated by the flow of air past a transport truck is a key design factor for the manufacturers of these vehicles as the sound levels in the cabin are a significant component of driver comfort. This paper describes a collaboration between Volvo GTT and the National Research Council Canada to measure the in-cabin aeroacoustics of a full-scale cab-over tractor in the NRC 9 m Wind Tunnel. Acoustic instrumentation was installed inside the tractor to record cabin noise levels and externally to acquire tunnel background noise data. Using a microphone mounted on the driver’s-side tunnel wall as a reference to remove variations in background noise levels between data points, differences in cabin noise levels were able to be detected when comparing the tractor with different configurations. The good repeatability of the data allowed for differences of as little as 0.5 dB to be measured.
Technical Paper

Combustion and Emissions of Paired-Nozzle Jets in a Pilot-Ignited Direct-Injection Natural Gas Engine

2016-04-05
2016-01-0807
This paper examines the combustion and emissions produced using a prototype fuel injector nozzle for pilot-ignited direct-injection natural gas engines. In the new geometry, 7 individual equally-spaced gas injection holes were replaced by 7 pairs of closely-aligned holes (“paired-hole nozzle”). The paired-hole nozzle was intended to reduce particulate formation by increasing air entrainment due to jet interaction. Tests were performed on a single-cylinder research engine at different speeds and loads, and over a range of fuel injection and air handling conditions. Emissions were compared to those resulting from a reference injector with equally spaced holes (“single-hole nozzle”). Contrary to expectations, the CO and PM emissions were 3 to 10 times higher when using the paired-hole nozzles. Despite the large differences in emissions, the relative change in emissions in response to parametric changes was remarkably similar for single-hole and paired-hole nozzles.
Technical Paper

Progress towards a 3D Numerical Simulation of Ice Accretion on a Swept Wing using the Morphogenetic Approach

2015-06-15
2015-01-2162
We have developed an original, three-dimensional icing modelling capability, called the “morphogenetic” approach, based on a discrete formulation and simulation of ice formation physics. Morphogenetic icing modelling improves on existing ice accretion models, in that it is capable of predicting simultaneous rime and glaze ice accretions and ice accretions with variable density and complex geometries. The objective of this paper is to show preliminary results of simulating complex three-dimensional features such as lobster tails and rime feathers forming on a swept wing. The results are encouraging. They show that the morphogenetic approach can predict realistically both the overall size and detailed structure of the ice accretion forming on a swept wing. Under cold ambient conditions, when drops freeze instantly upon impingement, the numerical ice structure has voids, which reduce its density.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Journal Article

Effect of SPS Process Parameters on the Densification Behaviour of Yttria Stabilized Zirconia

2014-04-01
2014-01-0835
Zirconium dioxide (ZrO2) doped with Yttria exhibits superplastic behaviour, corrosion resistance and excellent ion conducting properties [1] at moderate temperatures and thus it can be used as an electroceramic to measure the pH of high temperature water used in fuel cells. Several fabrication processes are available for preparation of zirconia ceramics. This research focused on the study of using Spark Plasma Sintering (SPS) process to prepare Yttria Stabilized Zirconia (YSZ) ceramic. 8 mol% YSZ was subjected to varying SPS sintering conditions. Samples were sintered by changing the heating cycle, dwell time, sintering pressure and cooling cycle. Subsequently, these parameters were related to the densification characteristics of the as-sintered YSZ. The results of specific gravity measurements and microstructure evaluation suggest that stepped heating followed by a slow cooling results in YSZ with highest relative density (99.9%).
Journal Article

Effect of Chill Parameters on the Residual Strain in Cast 319 Aluminum Alloy: A Neutron Diffraction Study

2014-04-01
2014-01-0836
The demand for light weight vehicles continues to stimulate extensive research into the development of light weight casting alloys and optimization of their manufacturing processes. Of primary relevance are Aluminum (Al) and Magnesium (Mg) based alloys, which have successfully replaced selected iron based castings in automobiles. However, optimization of as-cast microstructure, processing and performance remains a challenge for some Al-based alloys. In this context, placement of chills in castings has been frequently used to locally manipulate the solidification conditions and microstructure of a casting. In this work, the effect of using an active copper chill on the residual strain profile of a sand-cast B319 aluminum alloy was investigated. Wedge-shaped castings were produced with three different cooling conditions: copper plate chill, copper pipe with cooling water and no chill (baseline).
Technical Paper

Carded Recycled Carbon Fiber Mats for the Production of Thermoset Composites via Infusion/Compression Molding

2013-09-17
2013-01-2208
The use of carbon fiber reinforced thermoset composites has doubled in the last decade raising questions about the waste generated from manufacturing and at end-of-life, especially in the aircraft industry. In this study, 2.5 cm long carbon fibers were recovered from thermoset composite waste using a commercial scale pyrolysis process. Scanning electron microscopy, density measurements, single filament tensile testing as well as micro-droplet testing were performed to characterize the morphology, mechanical properties, and surface adhesion of the fibers. The recycled fibers appeared to be mostly undamaged and clean, exhibiting comparable mechanical properties to virgin carbon fibers. A carding process followed by an ultrasound treatment produced randomly aligned recycled fiber mats. These mats were used to fabricate composite plates, with fiber volume fractions up to 40 %, by infusion / compression molding.
Journal Article

Analysis of Residual Strain Profiles in Distorted Aluminum Engine Blocks by Neutron Diffraction

2013-04-08
2013-01-0171
In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components.
Technical Paper

Failure Mechanisms and Damage Model of Ductile Cast Iron under Low-Cycle Fatigue Conditions

2013-04-08
2013-01-0391
Strain-controlled low-cycle fatigue (LCF) experiments were conducted on ductile cast iron at total strain rates of 1.2/min, 0.12/min and 0.012/min in a temperature range of RT ~ 800°C. An integrated creep-fatigue (ICF) life prediction framework is proposed, which embodies a deformation mechanism based constitutive model and a thermomechanical damage model. The constitutive model is based on the decomposition of inelastic deformation into plasticity and creep mechanisms, which can describe both rate-independent and rate-dependent cyclic responses under wide strain rate and temperature conditions. The damage model takes into consideration of i) plasticity-induced fatigue, ii) intergranular embrittlement, iii) creep and iv) oxidation. Each damage form is formulated based on the respective physical mechanism/strain.
X