Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of Stoichiometric and Lean Combustion in a Spark Ignition, Direct Injection Optical Engine Using E10 and ETBE20 Fuels

2022-08-30
2022-01-1003
Biofuels are a promising alternative to fossil fuels as their availability has been reduced during the last decades and they are the main sources of greenhouse gases emissions. Moreover, the targets of the international regulations include reduction of fossil fuels consumption, and improvement of the sustainability of the vehicle fleet. Blending gasoline with biofuels will result in changes in fuel blending procedures and combustion process especially for the gasoline direct injection (GDI) engines. In this article, flame visualization using chemiluminescence techniques in a Single Cylinder Optical Research Engine (SCORE) is presented, with an adjusted intake pressure of 850 mbar and early intake single injection (280 CAD BTDC), by using 100% hydrocarbon-based gasoline, E10 (90% gasoline - 10% ethanol) and ETBE20 (80% gasoline - 20% ethyl tert-butyl ether). ETBE20 is a potential alternative for E10, as it contains the same amount of renewable fuel and has low water solubility.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Journal Article

An Estimation of the Effect of Turbulence from the Natural Wind and Traffic on the Cycle-Averaged-Drag Coefficient

2022-03-29
2022-01-0896
A drag coefficient, which is representative of the drag of a car undergoing a particular drive cycle, known as the cycle-averaged-drag coefficient, has been previously developed. It was derived for different drive cycles using mean values for the natural wind. It assumed terrain dependent wind velocities based on the Weibull function, equi-probable wind direction and shear effects. It did not, however, include any effects of turbulence in the natural wind. Some recent research using active vanes in the wind tunnel to generate turbulence has suggested that the effect on drag can be evaluated from the quasi steady wind inputs. On this basis a simple quasi-steady theory for the effect of turbulence on car drag is developed and applied to predicting the cycle-averaged-drag coefficient for a range of cars of different types. The drag is always increased by the turbulence but in all cases is relatively small.
Technical Paper

Quantifying the Information Value of Sensors in Highly Non-Linear Dynamic Automotive Systems

2022-03-29
2022-01-0626
In modern powertrains systems, sensors are critical elements for advanced control. The identification of sensing requirements for such highly nonlinear systems is technically challenging. To support the sensor selection process, this paper proposes a methodology to quantify the information gained from sensors used to control nonlinear dynamic systems using a dynamic probabilistic framework. This builds on previous work to design a Bayesian observer to deal with nonlinear systems. This was applied to a bimodal model of the SCR aftertreatment system. Despite correctly observing the bimodal distribution of the internal Ammonia-NOx Ratio (ANR) state, it could not distinguish which state is the true state. This causes issues for a control engineer who is less interested in how precise a measurement is and more interested in the location within control parameter space. Information regarding the dynamics of the systems is required to resolve the bimodality.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

Towards a Standardized Assessment of Automotive Aerodynamic CFD Prediction Capability - AutoCFD 2: Windsor Body Test Case Summary

2022-03-29
2022-01-0898
To improve the state of the art in automotive aerodynamic prediction using CFD, it is important to compare different CFD methods, software and modelling for standardized test cases. This paper reports on the 2nd Automotive CFD Prediction Workshop for the Windsor body squareback test case. The Windsor model has high quality experimental data available and a simple geometry that allows it to be simulated with limited computational resources. The model is 1 metre long and operates at a Reynolds number of 2.7 million. The original Windsor model did not include wheels, but a second variant was added here with non-rotating wheels. Experimental data is available for integrated forces, surface pressure and wake PIV surveys. Eight standard meshes were provided, covering the two geometry variants, two near wall mesh spacings (relating to wall resolved and wall modelled) and two mesh densities in the wake (relating to RANS and eddy resolving).
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Journal Article

A Wind Tunnel Study of the Windsor Body with a Streamlined Tail

2021-04-06
2021-01-0954
The effects of adding a streamlined tail to a simple vehicle shape, represented by the Windsor Body has been investigated in a small scale wind tunnel experiment. The extended tail has a constant width, with a flat lower surface and a constant upper surface taper angle. The tail is truncated in steps to understand the trends in the principal aerodynamic characteristics. The slant surface and the base have been pressure tapped to indicate the contribution to drag and lift from these surfaces. The bodies have been tested over a range of yaw angles and wind tunnel airspeeds. The effects of adding wheels, albeit in a fixed ground experiment, has also been studied. The experimental data for the basic wheel-less body in a squareback configuration and with tapered tails of different length at zero yaw has been compared with an earlier CFD simulation of the same configurations.
Technical Paper

Recurrent and Time-Delay Neural Networks as Virtual Sensors for NOx Emissions in Marine Diesel Powertrains

2021-03-25
2021-01-5042
Neural networks (NN) for marine engines, using raw measurement data from laboratory measurements, are developed and verified. These models can be utilized as virtual sensors of engine-out NOx emissions and lambda (λ). Investigations for the optimal NN configuration targeting models were carried so they can capture the dynamic behavior of a marine diesel engine, can generalize within the training range, and have the minimum complexity due to execution performance and portability reasons. Two configurations of NNs are investigated, the recurrent (RNN) and the time-delay neural network (TDNN). The resulting NN models are deployed on a prototype engine control unit (ECU) platform and are validated in real time for operating points and patterns that are not included in the training dataset. The real-time validation shows that the predicted quantities remain consistent in most operating areas and the dynamic behavior of the system is captured and reproduced accurately.
Technical Paper

Cycle-Driven Optimization of a Fixed-Structure Controller for Urea Dosing in a Mobile SCR System

2020-11-04
2020-01-5106
A model-based urea-dosing controller has been developed for the selective catalytic reduction (SCR) units on a diesel engine exhaust aftertreatment system (EATS). The SCR units consist of an integrated SCR-coated filter and then followed by a flow-through SCR catalyst. The controller was developed based on an analysis of the data generated from a Millbrook London Transport Bus (MLTB) test cycle fed into a validated model of the SCR-filter and SCR units. The critical system parameters that showed strong correlation with outlet nitrogen oxides (NOx) and ammonia (NH3) emissions were first identified, and then the sensitivity of those parameters was analyzed. The most sensitive system parameters were configured as the controller gain parameters. A proportional controller based on the key parameters with optimized gains settings for the MLTB cycle delivered over a 10% reduction in cumulative NOx emission over the cycle compared to a fixed NH3/NOx ratio (ANR) controller.
Technical Paper

Particulate Contamination in Biodiesel Fuel under Long-Term Storage

2020-09-15
2020-01-2143
Many incidents associated with filter plugging have extensively been reported in microbially contaminated diesel and biodiesel fuel systems, especially under long term storage conditions. In this study a quantitative assessment of the undesirable insoluble solids produced in contaminated biodiesel fuels was carried out in order to evaluate their evolution rate during biodeterioration. For this purpose, a series of contaminated biodiesel fuel microcosms were prepared and stored for six months under stable conditions. The quantity of the particulate contaminants was monitored during storage by a multiple filtration technique which was followed at the end by a comparison with the active bioburden per ATP bioluminescence protocol. Additionally, identical microcosms were treated with a commercially available biocide in order to examine the latter’s activity both on solids formation and the microbial proliferation.
Technical Paper

Parametric Study of Reduced Span Side Tapering on a Simplified Model with Wheels

2020-04-14
2020-01-0680
Many modern vehicles have blunt rear end geometries for design aesthetics and practicality; however, such vehicles are potentially high drag. The application of tapering; typically applied to an entire edge of the base of the geometry is widely reported as a means of reducing drag, but in many cases, this is not practical on real vehicles. In this study side tapers are applied to only part of the side edge of a simplified automotive geometry, to show the effects of practical implementations of tapers. The paper reports on a parametric study undertaken in Loughborough University’s Large Wind Tunnel with the ¼ scale Windsor model equipped with wheels. The aerodynamic effect of implementing partial side edge tapers is assessed from a full height taper to a 25% taper in both an upper and lower body configuration. These were investigated using force and moment coefficients, pressure measurements and planar particle image velocimetry (PIV).
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Numerical Investigation of Heat Retention and Warm-Up with Thermal Encapsulation of Powertrain

2020-04-14
2020-01-0158
Powertrain thermal encapsulation has the potential to improve fuel consumption and CO2 via heat retention. Heat retained within the powertrain after a period of engine-off, can increase the temperature of the next engine start hours after key-off. This in turn reduces inefficiencies associated with sub-optimal temperatures such as friction. The Ambient Temperature Correction Test was adopted in the current work which contains two World-wide harmonised Light duty Test Procedure (WLTP) cycles separated by a 9-hour soak period. A coupled 1D - 3D computational approach was used to capture heat retention characteristics and subsequent warm-up effects. A 1-D powertrain warm-up model was developed in GT-Suite to capture the thermal warm-up characteristics of the powertrain. The model included a temperature dependent friction model, the thermal-hydraulic characteristics of the cooling and lubrication circuits as well as parasitic losses associated with pumps.
Technical Paper

Streamlined Tails - The Effects of Truncation on Aerodynamic Drag

2020-04-14
2020-01-0673
Significant aerodynamic drag reduction is obtained on a bluff body by tapering the rear body. In the 1930’s it was found that a practical low drag car body could be achieved by cutting off the tail of a streamlined shape. The rear end of a car with a truncated tail is commonly referred to as a Kamm back. It has often been interpreted as implying that the drag of this type of body is almost the same as that for a fully streamlined shape. From a review of the limited research into truncated streamlined tails it is shown in this paper that, while true for some near axisymmetric bodies, it is not the case for many more car-like shapes. For these shapes the drag reduction from an elongated tail varies almost linearly with the reduction in cross section area. A CFD simulation to determine the drag reduction from a truncated streamlined tail of variable length on the simple Windsor Body is shown by way of confirmation.
Journal Article

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

2020-04-14
2020-01-0791
Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
Technical Paper

Deep Optimization of Catalyst Layer Composition via Data-Driven Machine Learning Approach

2020-04-14
2020-01-0859
Proton exchange membrane fuel cell (PEMFC) provides a promising future low carbon automotive powertrain solution. The catalyst layer (CL) is its core component which directly influences the output performance. PEMFC performance can be greatly improved by the effective optimization of CL composition. This work demonstrates a deep optimization of CL composition for improving the PEMFC performance, including the platinum (Pt) loading, Pt percentage of carbon-supported Pt and ionomer to carbon ratio of the anode and the cathode,. The simulation results by a PEMFC three-dimensional (3D) computation fluid dynamics (CFD) model coupled with the CL agglomerate model is used to train the artificial neural network (ANN) which can efficiently predict the current density under different CL composition. Squared correlation coefficient (R-square) and mean percentage error in the training set and validation set are 0.9867, 0.2635% and 0.9543, 1.1275%, respectively.
Technical Paper

A Bifurcation Analysis of an Open Loop Internal Combustion Engine

2019-04-02
2019-01-0194
The process of engine mapping in the automotive industry identifies steady-state engine responses by running an engine at a given operating point (speed and load) until its output has settled. While the time simulating this process with a computational model for one set of parameters is relatively short, the cumulative time to map all possible combinations becomes computationally inefficient. This work presents an alternative method for mapping out the steady-state response of an engine in simulation by applying bifurcation theory. The bifurcation approach used in this work allows the engine’s steady-state response to be traced through the model’s state-parameter space under the simultaneous variation of one or more model parameters. To demonstrate this approach, a bifurcation analysis of a simplified nonlinear engine model is presented.
Technical Paper

Towards In-Cylinder Flow Informed Engine Control Strategies Using Linear Stochastic Estimation

2019-04-02
2019-01-0717
Many modern I.C. engines rely on some form of active control of injection, timing and/or ignition timing to help combat tailpipe out emissions, increase the fuel economy and improve engine drivability. However, development of these strategies is often optimised to suit the average cycle at each condition; an assumption that can lead to sub-optimal performance, especially an increase in particulate (PN) emissions as I.C. engine operation, and in-particular its charge motion is subject to cycle-to-cycle variation (CCV). Literature shows that the locations of otherwise repeatable large-scale flow structures may vary by as much 25% of the bore dimension; this could have an impact on fuel break-up and distribution and therefore subsequent combustion performance and emissions.
Technical Paper

Real Time Energy Management of Electrically Turbocharged Engines Based on Model Learning

2019-04-02
2019-01-1056
Engine downsizing is a promising trend to decarbonise vehicles but it also poses a challenge on vehicle driveability. Electric turbochargers can solve the dilemma between engine downsizing and vehicle driveability. Using the electric turbocharger, the transient response at low engine speeds can be recovered by air boosting assistance. Meanwhile, the introduction of electric machine makes the engine control more complicated. One emerging issue is to harness the augmented engine air system in a systematical way. Therefore, the boosting requirement can be achieved fast without violating exhaust emission standards. Another raised issue is to design an real time energy management strategy. This is of critical to minimise the required battery capacity. Moreover, using the on-board battery in a high efficient way is essential to avoid over-frequent switching of the electric machine. This requests the electric machine to work as a generator to recharge the battery.
X