Refine Your Search

Topic

Author

Search Results

Technical Paper

Study on Hybrid Control Methods of Heavy-Duty Plug-In Hybrid Vehicle for Improving Fuel Economy and Emissions

2020-09-15
2020-01-2259
Fuel consumption and exhaust gas emission regulations are being tightened around the world year by year. Electric vehicles are needed to reduce carbon dioxide emissions. Especially, Plug-in hybrid heavy-duty vehicles (PHEVs) are expected to become widespread. PHEVs enable all-electric modes, as well as hybrid modes, using both engines and electric motors, but the control system significantly affects the characteristics of fuel consumption and gas emission. In this study, we used new testing machine (we call extended HILS) to analyze the fuel consumption and gas emission for different plug-in hybrid control systems and investigated the optimal control method for PHEVs.
Journal Article

Study of New HILS Test Method with Combination of the Virtual Hybrid Electric Powertrain Systems and the Engine Test Bench

2019-12-19
2019-01-2343
Fuel consumption rate (fuel economy) and exhaust gas emission regulations are being tightened around the world year by year. In Europe, the real driving emission (RDE) method for evaluating exhaust gas emitted from road-going vehicles was introduced after September 2017 for new types of light/medium-duty vehicles, in addition to the chassis dynamometer test using the worldwide harmonized light vehicles test procedure (WLTP). Further, the worldwide harmonized heavy-duty certification (WHDC) method was introduced after 2016 as an exhaust gas emission test method for heavy-duty vehicles. In each evaluation, the tests of vehicles and engines are initiated from cold states. Heavy-duty hybrid vehicles are evaluated using the vehicle simulation method. For example, the power characteristics of a engine model is obtained during engine warm operation. Therefore, various performances during cold start cannot be precisely evaluated by using simulator.
Technical Paper

The Effects of Inboard Shoulder Belt and Lap Belt Loadings on Chest Deflection

2018-11-12
2018-22-0002
Chest injuries occur frequently in frontal collisions. During impact, tension in the lap belt is transferred to the inboard shoulder belt, which compresses the lower ribs of the occupant. In this research, inboard shoulder belt and lap belt geometries and forces were investigated to reduce chest deflection. First, the inboard shoulder belt geometry was changed by the lap/shoulder belt (L/S) junction for the rear seat occupant in sled tests using Hybrid III finite element simulation, sled tests and THOR simulation. As the L/S junction was closer to the ASIS (anterior superior iliac spine), chest deflection of the Hybrid III was smaller. The L/S junction around the ilium has the potential to reduce chest deflection without significant increase of head excursion. For THOR, although the chest deflection reduction effect due to closer L/S junction to the ASIS was observed, chest deflection was still substantially large since the lap belt overrode the ASIS.
Technical Paper

Strain-rate Dependency of Axonal Tolerance for Uniaxial Stretching

2017-11-13
2017-22-0003
This study aims to clarify the relation between axonal deformation and the onset of axonal injury. Firstly, to examine the influence of strain rate on the threshold for axonal injury, cultured neurons were subjected to 12 types of stretching (strains were 0.10, 0.15, and 0.20 and strain rates were 10, 30, 50, and 70 s-1). The formation of axonal swellings and bulbs increased significantly at strain rates of 50 and 30 s-1 with strains of 0.15 and 0.20, respectively, even though those formations did not depend on strain rates in cultures exposed to a strain of 0.10. Then, to examine the influence of the strain along an axon on axonal injury, swellings were measured at every axonal angle in the stretching direction. The axons that were parallel to stretching direction were injured the most. Finally, we proposed an experimental model that subjected an axon to more accurate strain.
Technical Paper

Association of Impact Velocity with Risks of Serious Injuries and Fatalities to Pedestrians in Commercial Truck-Pedestrian Accidents

2016-11-07
2016-22-0007
This study aimed to clarify the relationship between truck-pedestrian crash impact velocity and the risks of serious injury and fatality to pedestrians. We used micro and macro truck-pedestrian accident data from the Japanese Institute for Traffic Accident Research and Data Analysis (ITARDA) database. We classified vehicle type into five categories: heavy-duty trucks (gross vehicle weight [GVW] ≥11 × 103 kg [11 tons (t)], medium-duty trucks (5 × 103 kg [5 t] ≤ GVW < 11 × 103 kg [11 t]), light-duty trucks (GVW <5 × 103 kg [5 t]), box vans, and sedans. The fatality risk was ≤5% for light-duty trucks, box vans, and sedans at impact velocities ≤ 30 km/h and for medium-duty trucks at impact velocities ≤20 km/h. The fatality risk was ≤10% for heavy-duty trucks at impact velocities ≤10 km/h. Thus, fatality risk appears strongly associated with vehicle class.
Technical Paper

A Study on Hybrid Control Method for Improvement of Fuel Economy and Exhaust-Gas Emission of Hybrid Trucks

2015-09-01
2015-01-1780
Next-generation vehicles which include Electric Vehicles and Hybrid Electric Vehicles are studied and expected to reduce carbon dioxide emissions. The number of small delivery hybrid trucks has increased in the commercial vehicle class. The engine load of a commercial hybrid truck is reduced by using an electric motor. Fuel economy of the hybrid truck is improved with the assist. On the other hand, exhaust-gas temperature is decreased, and it has a negative effect on the purification performance of aftertreatment system. In this report, the fuel performance and emission gas characteristics of marketed small hybrid trucks were surveyed using the chassis dynamometer test system.
Technical Paper

Head Impact Mechanisms of a Child Occupant Seated in a Child Restraint System as Determined by Impact Testing

2011-11-07
2011-22-0006
In side collision accidents, the head is the most frequently injured body region for child occupants seated in a child restraint system (CRS). Accident analyses show that a child's head can move out of the CRS shell, make hard contact with the vehicle interior, and thus sustain serious injuries. In order to improve child head protection in side collisions, it is necessary to understand the injury mechanism of a child in the CRS whose head makes contact with the vehicle interior. In this research, an SUV-to-car oblique side crash test was conducted to reconstruct such head contacts. A Q3s child dummy was seated in a CRS in the rear seat of the target car. The Q3s child dummy's head moved out beyond the CRS side wing, moved laterally, and made contact with the side window glass and the doorsill. It was demonstrated that the hard head contact, which produced a high HIC value, could occur in side collisions.
Technical Paper

Performance of Collision Damage Mitigation Braking Systems and their Effects on Human Injury in the Event of Car-to-Pedestrian Accidents

2011-11-07
2011-22-0017
The number of traffic deaths in Japan was 4,863 in 2010. Pedestrians account for the highest number (1,714, 35%), and vehicle occupants the second highest (1,602, 33%). Pedestrian protection is a key countermeasure to reduce casualties in traffic accidents. A striking vehicle's impact velocity could be considered a parameter influencing the severity of injury and possibility of death in pedestrian crashes. A collision damage mitigation braking system (CDMBS) using a sensor to detect pedestrians could be effective for reducing the vehicle/pedestrian impact velocity. Currently in Japan, cars equipped with the CDMBS also have vision sensors such as a stereo camera for pedestrian detection. However, the ability of vision sensors in production cars to properly detect pedestrians has not yet been established. The effect of reducing impact velocity on the pedestrian injury risk has also not been determined.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Technical Paper

Optimization of Hydrogen Jet Configuration by Single Hole Nozzle and High Speed Laser Shadowgraphy in High Pressure Direct Injection Hydrogen Engines

2011-08-30
2011-01-2002
A new ignition-combustion concept named PCC (Plume Ignition Combustion Concept), which ignite rich mixture plume in the middle of injection period or right after injection of hydrogen is completed, is proposed by the authors in order to reduce NOx emissions in high engine load conditions with minimizing trade-offs on thermal efficiency. In this study fundamental requirements of hydrogen jet to optimize PCC are investigated by using single and multi-hole nozzle with a combination of high speed laser shadowgraphy to visualize propagating flame. As a result, it was infered that igniting the mixture plume in the middle of injection period with minimizing jet penetration to chamber wall is effective reducing NOx formation even further.
Technical Paper

Nerve Level Traumatic Brain Injury in in Vivo/in Vitro Experiments

2010-11-03
2010-22-0010
The number of traffic deaths in Japan was 4,914 in 2009. Since the head was the most common site of injury in traffic accidents (2,302, 47%), traumatic brain injury causes the fatalities in these accidents. The aim of the present study was to quantify micro injuries in the animal brain for gaining insight and understanding of the human brain injury tolerance. Using porcine brain matter, in vitro stress relaxation experiments and in vivo impact experiments were conducted. In both experiments, the distribution of the damage ratio of the transverse to longitudinal length of cells, hereafter, referred to as an aspect ratio, in the brain matter under loading was examined. In the in vitro stress relaxation experiments, specimens were compressed vertically with a compression velocity of 1 mm/s, and the displacement was held for 140 sec when the compression strain reached the target strain. In the experiments, there were five categories of compression strain: 10, 20, 30, 40, and 50 percent.
Technical Paper

Combustion Characteristics and Performance Increase of an LPG-SI Engine with Liquid Fuel Injection System

2009-11-02
2009-01-2785
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO2 emission because of propane and butane, which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO2, in the past several years, LPG vehicles have widely used as the alternate to gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase of LPG vehicles to comprehend the combustion characteristics of LPG and to obtain the guideline for engine design and calibration. In this study, an LPG-SI engine was built up by converting fuel supply system of an in-line 4-cylinder gasoline engine, which has 1997 cm3 displacement with MPI system, to LPG liquid fuel injection system [1].
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper

Effect of Biodiesel Blending on Emission Characteristics of Modern Diesel Engine

2008-10-06
2008-01-2384
The use of biodiesel fuels as an alternative fuel for petroleum diesel fuel is very effective for the reduction of CO2 emission, because biodiesel is produced from renewable biomass resources. Biodiesel is usually blended to conventional diesel fuel in various proportions. It is possible that this biodiesel blending causes the problems on emission characteristics of modern diesel engine, because it could be confirmed that the application of neat biodiesel to modern diesel engines whose control parameters were optimized for conventional diesel fuel deteriorated the emission performances. It is necessary to clarify the effect of biodiesel blending on exhaust emissions of modern diesel engine. Rapeseed oil methyl ester (RME) was selected as a biodiesel used in this study.
Journal Article

Hydrogen Concentration Distribution in Simulated Spaces for a Hydrogen System Installed in a Large Bus in Case of Hydrogen Leakage

2008-04-14
2008-01-0727
For fuel cell vehicles, which have attracted attention in recent years, the prevention of hydrogen leakage is an essential safety issue. Large fuel cell buses will require a large space to store the hydrogen system. The behavior of hydrogen that has leaked into such a large space is unknown. In this report, we studied hydrogen concentration distribution by leaking hydrogen into simulated spaces in two cases: (1) when hydrogen gas tanks are installed on the roof of the bus, and (2) when an electricity-generating system, such as fuel cell stacks, etc., is installed at the rear of the bus. The results of the experiments show that hydrogen concentration distribution is kept at a constant level throughout each location in the simulated space, depending on the opening area and hydrogen leakage rate. It was also found that the diffusivity of hydrogen in air is extremely high.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Basic Research on the Release Method of High Pressure Hydrogen Gas for Fuel Cell Buses in the Case of a Vehicle Fire

2008-04-14
2008-01-0722
Fuel cell vehicles that use high pressure hydrogen gas as a fuel should be able to immediately release hydrogen gas from the cylinder through pressure relief devices (PRDs) in the event of a vehicle fire. The release through PRDs prevents the cylinder from exploding due to the increased pressure of hydrogen gas, but the method of releasing the gas needs to be specified in order to avoid secondary disaster due to the spread of fire. Since hydrogen cylinders for fuel cell buses are different in terms of installation location and size from those for ordinary vehicles, the location of PRDs and the release direction of hydrogen gas should be separately examined. For example, the improper locations of PRDs would raise the possibility of explosion because of a delay in temperature rise, and the direct release of hydrogen gas from a cylinder installed on the rooftop of the bus may disperse the flame over a wide area.
Technical Paper

Mechanism Controlling Autoignition Derived from Transient Chemical Composition Analysis in HCCI

2007-07-23
2007-01-1882
The chemical mechanism responsible for controlling ignition timing by using additives in HCCI has been investigated. Dimethyl ether (DME) and methanol were used as the main fuel and the additive, respectively. Fuel consumption and intermediate formation in the first stage (cool ignition) were measured with crank angle resolved pulse-valve sampling and exhaust gas analysis, where HCHO, HCOOH, CO, H2O2 and other species were detected as the intermediate. The effect of methanol addition retarding ignition is represented by an analytical model in which the growth rate of the chain reaction is reduced by the methanol addition.
X