Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Technical Paper

Emission Characteristics of a Urea SCR System under Catalysts Activated and De-Activated Conditions

2006-04-03
2006-01-0639
Urea SCR (Selective Catalytic Reduction) system has high potential of reducing NOx. But such as system durability and safety under deteriorated catalysts conditions have not been well enough clarified because it is new technology for vehicles. In this paper, current NOx emission level of an engine equipped with urea SCR system is discussed and then exhaust emission characteristics were analyzed when the SCR catalyst and/or oxidation catalyst lose their functions. When both SCR and oxidation catalyst were de-activated, not only NOx but also PM increased remarkably, which were much more than the engine-out emissions. Oxidation catalyst downstream of SCR catalyst was effective to suppress such deteriorations.
Technical Paper

N2O Emissions from Vehicles Equipped with Three-Way Catalysts in a Cold Climate

2002-05-06
2002-01-1717
Nitrous oxide (N2O) is a strong green house effect gas and three-way catalyst is one of the major sources. N2O is mostly emitted at temperatures during the process of light off in the catalyst and the frequency of this temperature range over total temperature range distribution affects strongly on N2O emission. The effect of cold ambient on N2O emission was analyzed based on N2O-catalyst temperature characteristics and catalyst temperature data gained by road driving test at north part of Japan in winter. As results, N2O emission may drastically increase in colder cities and winter city traffic conditions.
X