Refine Your Search

Topic

Author

Search Results

Technical Paper

NH 3 and H 2 Impact on Combustion and Emission Characteristics of i-C 8 H 18 Flame under Premixed and Diffusion Conditions

2024-04-09
2024-01-2370
Soot and carbon dioxide released from internal combustion engines became the key issues when using fossil fuels. Ammonia and hydrogen having zero-carbon species can reduce carbon-related emissions and enhance the reliance on renewable fuels. A comparative study of ammonia and hydrogen impact on combustion and emission characteristics of iso-octane flame was performed under different combustion conditions. Arrhenius equation, soot surface reactions, and modified kinetic mechanism were used to study the flame growth, soot nucleation, and surface growth rates. The results show that hydrogen increased the temperature about 20.74 K and 59.30 K, whereas ammonia reduced it about 82.17 K and 66.03 K at premixed and counterflow conditions, respectively. The flame speed of iso-octane was increased 43.83 cm/s by hydrogen and decreased 34.36 cm/s by ammonia. A reduction in CH2O caused a reduction in CO and CO2 emissions.
Technical Paper

NH 3 Impact on Combustion and Emission Characteristics of N-Heptane Flame

2023-04-11
2023-01-0329
Soot and carbon dioxide released from internal combustion engines became the key issues when using fossil fuels. The use of zero-carbon fuel, ammonia, with hydrocarbon fuels may play an important role in reducing the exhaust effect on the environment and mitigating the reliance on nonrenewable energy resources. However, ammonia reduces the flame speed of hydrocarbon fuels. A numerical approach was executed to study the ammonia impact on n-heptane, a diesel surrogate, flame. A kinetic mechanism was prepared by adding the sub-mechanism of ammonia, NO2 and NO3 emissions, and soot precursors to the n-heptane kinetic mechanism. The modified Arrhenius equation and soot surface reactions were used to study the soot formation with NOx emissions. The results showed that ammonia decreased the fractions of carbon-related species and raised the concentration of non-carbon-related species.
Technical Paper

Study on Hybrid Control Methods of Heavy-Duty Plug-In Hybrid Vehicle for Improving Fuel Economy and Emissions

2020-09-15
2020-01-2259
Fuel consumption and exhaust gas emission regulations are being tightened around the world year by year. Electric vehicles are needed to reduce carbon dioxide emissions. Especially, Plug-in hybrid heavy-duty vehicles (PHEVs) are expected to become widespread. PHEVs enable all-electric modes, as well as hybrid modes, using both engines and electric motors, but the control system significantly affects the characteristics of fuel consumption and gas emission. In this study, we used new testing machine (we call extended HILS) to analyze the fuel consumption and gas emission for different plug-in hybrid control systems and investigated the optimal control method for PHEVs.
Journal Article

Electromagnetic Characteristic Comparison of Superconducting Synchronous Motor Characteristics for Electric Aircraft Propulsion Systems

2019-09-16
2019-01-1912
This paper describes the comparison of electromagnetic characteristics of two different superconducting-motor structures for electrified aircraft propulsion systems. Future electrified aircraft demand higher output (over 16 kW/kg) and higher efficiency (> 98%) for their motors in comparison with current ones. To satisfy the demands, two kinds of superconducting motors are dealt in this study: one is partially superconducting motors (PSCMs), made of superconducting field coils and copper armature windings; the other is the fully superconducting motors (FSCMs) made of superconducting field/armature windings. They are cooled at 20 K with liquid hydrogen. We designed these two motors with finite element method to obtain the output density of 16-20 kW/kg for future electrified propulsion systems. We selected 3.0- and 5.0 MW superconducting motors, considering the application to aircraft for almost 180 passengers and 44 MW rated power for take-off.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

A Study on Hybrid Control Method for Improvement of Fuel Economy and Exhaust-Gas Emission of Hybrid Trucks

2015-09-01
2015-01-1780
Next-generation vehicles which include Electric Vehicles and Hybrid Electric Vehicles are studied and expected to reduce carbon dioxide emissions. The number of small delivery hybrid trucks has increased in the commercial vehicle class. The engine load of a commercial hybrid truck is reduced by using an electric motor. Fuel economy of the hybrid truck is improved with the assist. On the other hand, exhaust-gas temperature is decreased, and it has a negative effect on the purification performance of aftertreatment system. In this report, the fuel performance and emission gas characteristics of marketed small hybrid trucks were surveyed using the chassis dynamometer test system.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Technical Paper

Development of Gasoline Combustion Reaction Model

2013-04-08
2013-01-0887
Gasoline includes various kinds of chemical species. Thus, the reaction model of gasoline components that includes the low-temperature oxidation and ignition reaction is necessary to investigate the method to control the combustion process of the gasoline engine. In this study, a gasoline combustion reaction model including n-paraffin, iso-paraffin, olefin, naphthene, alcohol, ether, and aromatic compound was developed. KUCRS (Knowledge-basing Utilities for Complex Reaction Systems) [1] was modified to produce paraffin, olefin, naphthene, alcohol automatically. Also, the toluene reactions of gasoline surrogate model developed by Sakai et al. [2] including toluene, PRF (Primary Reference Fuel), ethanol, and ETBE (Ethyl-tert-butyl-ether) were modified. The universal rule of the reaction mechanisms and rate constants were clarified by using quantum chemical calculation.
Technical Paper

A Liquid-Piston Steam Engine

2011-10-06
2011-28-0137
Recently, waste heat recovery system from automobile exhaust gas has attracted a lot of attention as one of the promising technology to improve fuel efficiency and to reduce carbon dioxide emission. In order to put this system into practice, we developed a novel liquid-piston steam engine which has large potential of high efficiency, high reliability and low cost. Thermal efficiency of 12.7 % is achieved at temperatures of Th = 270 °C and l = 80 °C. Finally, electrical output of waste heat recovery system with the liquid-piston steam engine is estimated to be 44 or 79Wh under NEDC or HWFET modes, respectively.
Journal Article

Study of DME Diesel Engine for Low NOx and CO2 Emission and Development of DME Trucks for Commercial Use

2011-08-30
2011-01-1961
Study of DME diesel engines was conducted to improve fuel consumption and emissions of its. Additionally, DME trucks were built for the promotion and the road tests of these trucks were executed on EFV21 project. In this paper, results of diesel engine tests and DME truck driving tests are presented. As for DME diesel engines, the performance of a DME turbocharged diesel engine with LPL-EGR was evaluated and the influence of the compression ratio was also explored. As for DME trucks, a 100,000km road test was conducted on a DME light duty truck. After the road test, the engine was disassembled for investigation. Furthermore, two DME medium duty trucks have been developed and are now the undergoing practical road testing in each area of two transportation companies in Japan.
Technical Paper

Effect of Fuel Properties of Biodiesel on Its Combustion and Emission Characteristics

2011-08-30
2011-01-1939
The use of biofuel is essential for the reduction of greenhouse gas emission. This paper highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO₂ emission from combustion of biodiesel is defined to be equivalent to the CO₂ volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, biodiesel is known to increase the NOx emission when compared with operating with conventional diesel fuel, then suppressing this increase is regarded as a critical issue. This study is intended to identify the fuel properties of biodiesel free from increase in the NOx emission.
Technical Paper

Optimization of Hydrogen Jet Configuration by Single Hole Nozzle and High Speed Laser Shadowgraphy in High Pressure Direct Injection Hydrogen Engines

2011-08-30
2011-01-2002
A new ignition-combustion concept named PCC (Plume Ignition Combustion Concept), which ignite rich mixture plume in the middle of injection period or right after injection of hydrogen is completed, is proposed by the authors in order to reduce NOx emissions in high engine load conditions with minimizing trade-offs on thermal efficiency. In this study fundamental requirements of hydrogen jet to optimize PCC are investigated by using single and multi-hole nozzle with a combination of high speed laser shadowgraphy to visualize propagating flame. As a result, it was infered that igniting the mixture plume in the middle of injection period with minimizing jet penetration to chamber wall is effective reducing NOx formation even further.
Technical Paper

Study on Biomass Gas HCCI Engine

2009-11-03
2009-32-0066
Autoignition and combustion characteristics of biomass gas were investigated experimentally. A mock biomass gas consisting of H2, CH4, CO, N2 and CO2 was used as a wood pyrolysis gas. Experiments were carried out with a modified gas engine varying equivalence ratio and fuel composition. High hydrogen content increases the combustion speed, but it hardly affects ignition timing. Carbon monoxide in fuels does not affect combustion speed largely. The autoignition temperature of biomass gas is about 1000K, which is the same as those of hydrocarbon fuels. The engine also realizes 42% of the indicated thermal efficiency and a maximum IMEP of 0.3MPa.
Journal Article

Efficiency and Emissions-Optimized Operating Strategy of a High-pressure Direct Injection Hydrogen Engine for Heavy-duty Trucks

2009-11-02
2009-01-2683
Hydrogen engines are required to provide high thermal efficiency and low nitrogen oxide (NOx) emissions. There are many possible combinations of injection pressure, injection timing, ignition timing, lambda and EGR rate that can be used in a direct-injection system for achieving such performance. In this study, several different combinations of injection and ignition timings were classified as possible combustion regimes, and experiments were conducted to make clear the differences in combustion conditions attributable to these timings. Lambda and the EGR rate were also evaluated for achieving the desired performance, and indicated thermal efficiency of over 45% was obtained at IMEP of 0.95 MPa. It was found that a hydrogen engine with a high-pressure direct-injection system has a high potential for improving thermal efficiency and reducing NOx emissions.
Technical Paper

Combustion Characteristics and Performance Increase of an LPG-SI Engine with Liquid Fuel Injection System

2009-11-02
2009-01-2785
Compared with petroleum fuel, liquefied petroleum gas (LPG) demonstrates advantages in low CO2 emission because of propane and butane, which are the main components of LPG, making H/C ratio higher. In addition, LPG is suitable for high efficient operation of a spark ignition (SI) engine due to its higher research octane number (RON). Because of these advantages, that is, diversity of energy source and reduction of CO2, in the past several years, LPG vehicles have widely used as the alternate to gasoline vehicles all over the world. Consequently, it is absolutely essential for the performance increase of LPG vehicles to comprehend the combustion characteristics of LPG and to obtain the guideline for engine design and calibration. In this study, an LPG-SI engine was built up by converting fuel supply system of an in-line 4-cylinder gasoline engine, which has 1997 cm3 displacement with MPI system, to LPG liquid fuel injection system [1].
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Journal Article

Summary and Progress of the Hydrogen ICE Truck Development Project

2009-06-15
2009-01-1922
A development project for a hydrogen internal combustion engine (ICE) system for trucks supporting Japanese freightage has been promoted as a candidate for use in future vehicles that meet ultra-low emission and anti-global warming targets. This project aims to develop a hydrogen ICE truck that can handle the same freight as existing trucks. The core development technologies for this project are a direct-injection (DI) hydrogen ICE system and a liquid hydrogen tank system which has a liquid hydrogen pump built-in. In the first phase of the project, efforts were made to develop the DI hydrogen ICE system. Over the past three years, the following results have been obtained: A high-pressure hydrogen gas direct injector developed for this project was applied to a single-cylinder hydrogen ICE and the indicated mean effective pressure (IMEP) corresponding to a power output of 147 kW in a 6-cylinder hydrogen ICE was confirmed.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
Journal Article

Optimization of PM Measurements with a Number Counting Method

2008-10-06
2008-01-2436
Repeatabilities of PM measurements on a heavy-duty diesel engine equipped with a diesel particulate filter (DPF) using a filter weighing method and a number counting method with a full flow dilution system and a partial flow system were evaluated. The filter method with partial flow exhibited the best repeatability. However, a good correlation between the full flow and the partial flow number counting results suggests that the fluctuations observed using the number counting method were caused by changes in the engine exhaust. Applying a strict preconditioning procedure should improve the repeatability of the number counting method because this method is more sensitive than the filter weighing method. In addition, the effects of the specifications for the number counting method were evaluated. The results indicate that the hose length from the tip of the sampling probe to the inlet of the number counting system had a negligible effect.
X