Refine Your Search

Topic

Author

Search Results

Technical Paper

Understanding of LME Cracking Phenomenon in Spot Welding and Crack Prediction Using FE Analysis

2022-03-29
2022-01-0328
The application of high-strength steel sheets to car bodies is expanding to improve the crashworthiness and achieve weight reduction [1, 2]. Conversely, in recent years, the occurrence of liquid metal embrittlement (LME) cracks has been discussed in resistance spot welding using a Zn-based coated high-strength steel [3-5]. This study examined the factors causing LME cracks and identified the locations of LME cracks found in resistance spot welds using a Zn-coated high-strength steel sheet. Furthermore, through an analytical approach using a scanning electron microscopy (SEM) and transmission electron microscopy (TEM), for a joint with an LME crack, it was found that (1) grain boundary fracture occurred at LME crack portion and its fracture surface was covered with Zn, (2) Zn penetrated into prior-austenite grain boundaries near the LME crack, and (3) Zn concentration decreased toward the tip of the Zn-penetrated site.
Technical Paper

Using Finite-Element Analysis Results and Field-Programmable Gate Arrays to Accelerate Hybrid Powertrain Controller Validation

2015-04-14
2015-01-1154
Test and validation of control systems for hybrid vehicle power trains provide a unique set of challenges. Not only does the electronic control unit (ECU), or pair of ECUs, need to smoothly coordinate power flow between two or more power plants, but it also must handle the power electronics' high-speed dynamics due to PWM signals frequently in the 10-20 kHz range. The trend in testing all-electric and hybrid-electric ECUs has moved toward using field-programmable gate arrays (FPGAs) as the processing node for simulating inverter and electric motor dynamics in real time. Acting as a purpose-built processor colocated with analog and digital input and output, the FPGA makes it possible for real-time simulation loop rates on the order of one microsecond.
Technical Paper

Analysis of In-cylinder Flow and Fuel Vapor Concentration Distribution in Gasoline Direct Injection Engine

2011-08-30
2011-01-2052
This paper details the air-fuel mixing process in a gasoline direct injection (DI) engine. Laser measurement techniques such as particle image velocimetry (PIV) and laser induced fluorescence (LIF) were employed on the optical engine with a transparent cylinder to analyze the in-cylinder flow and fuel vapor concentration. In addition, firing tests were conducted using an actual engine. Test results showed that the multi-stage injection is effective for air-fuel mixing and improvement of combustion stability.
Technical Paper

Behavior of Shock Wave and Pressure Wave of SI Knocking with Super Rapid Compression Machine

2011-08-30
2011-01-1875
Behaviors of shock waves in knocking phenomena were observed in detail and influences of low temperature reaction on the flame and spontaneous ignition of end gas were investigated through experiments using high-speed direct and schlieren photography. As a result, it was found that light emission of shock waves, that is an indicator of pressure, rose when the shock waves collided with the cylinder wall and that pressure waves arose by low temperature reaction before knocking occurrence. Flame oscillation was caused by pressure waves. It is presumed that pressure waves influence spontaneous ignition.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Journal Article

Development of Precision Rolling Machine

2010-04-12
2010-01-0978
This paper proposes a rolling machine that forms fine corrugated section patterns for thin sheets. A prototype of the machine was made and the performance of the machine was tested. As compared with press forming, rolling has the advantages of the high forming limit, the low forming reaction force, the easy control of the thin sheet's curve and high productivity. We confirmed these four advantages by using finite element analyses and the prototype rolling machine. Stainless steel sheets and titanium sheets, which were one of the materials with a low forming limit, were used. Firstly, the rolling showed a 1.3-times higher forming limit than the press forming in the case that a fine corrugated section pattern was formed in a stainless steel sheet of 22-mm square sizes. Secondly, the forming reaction force of the rolling was about one-twentieth of the press forming without coining, and the experimental results agreed with the finite element simulation.
Technical Paper

A Comparative Study of HCCI and ATAC Combustion Characteristics Based on Experimentation and Simulations Influence of the Fuel Octane Number and Internal EGR on Combustion

2005-10-24
2005-01-3732
Controlled Autoignition (CAI) combustion processes can be broadly divided between a CAI process that is applied to four-stroke engines and a CAI process that is applied to two-stroke engines. The former process is generally referred to as Homogeneous Charge Compression Ignition (HCCI) combustion and the later process as Active Thermo-Atmosphere Combustion (ATAC). The region of stable engine operation differs greatly between these two processes, and it is thought that the elucidation of their differences and similarities could provide useful information for expanding the operation region of HCCI combustion. In this research, the same two-stroke engine was operated under both the ATAC and HCCI combustion processes to compare their respective combustion characteristics. The results indicated that the ignition timing was less likely to change in the ATAC process in relation to changes in the fuel octane number than it was in the HCCI combustion process.
Technical Paper

A Study on New Combustion Method of High Compression Ratio Spark Ignition Engine

2005-04-11
2005-01-0240
A new combustion method of high compression ratio SI engine was studied and proposed in order to achieve higher thermal efficiency of SI engine comparable to that of CI engine. Compression ratio of SI engine is generally restricted by the knocking phenomena. A combustion chamber profile and a cranking mechanism are studied to avoid knocking with high compression ratio. Since reducing the end-gas temperature will suppress knocking, a combustion chamber was considered to have a wide surface at the end-gas region. However, wide surface will lead to high heat loss, which may cancel the gain of higher compression ratio operation. Thereby, a special cranking mechanism was adopted which allowed the piston to move rapidly near TDC. Numerical simulations were performed to optimize the cranking mechanism for achieving higher thermal efficiency. An elliptic gear system and a leaf-shape gear system were employed in the simulations.
Technical Paper

Evaluation of the Corrosion Durability of Steel Systems for Automobile Fuel Tanks.

2005-04-11
2005-01-0540
The Strategic Alliance for Steel Fuel Tanks (SASFT), an international group of steel producers and manufacturing companies, recently completed a major corrosion study of various steel ‘systems’ for automobile fuel tanks. The ten steel systems included low carbon steels (either pre-painted or post-painted with protective coatings) and stainless steels. The 2-year corrosion test program included testing in salt solutions to simulate road environments for the exterior of a fuel tank. Special test specimens were designed to represent a manufactured tank. The external tests used were the Neutral Salt Spray test (ASTM B117) with exposures up to 2000 hours and the Cyclic Corrosion test (SAE J2334) with exposures up to 120 and 160 cycles to represent vehicle lives of 15 years and 20 years, respectively. Additionally, the resistance to an aggressive ethanol-containing fuel (internal tank corrosion) was assessed by using uniquely designed drawn cups of the various steel systems.
Technical Paper

A New Method of Stress Calculation in Spot Welded Joint and Its Application to Fatigue Life Prediction of Actual Vehicle

2003-10-27
2003-01-2809
A method of fatigue life prediction of spot welded joint under multi-axial loads has been developed by fatigue life estimation working groups in the committee on fatigue strength and structural reliability of JSAE. This method is based on the concept of nominal structural stress ( σ ns) proposed by Radaj and Rupp, and improved so that D value is not involved in stress calculation. The result of fatigue life estimation of actual vehicle with nominal structural stress which was calculated through newly developed method had very good correlation with the result of multi-axial loads fatigue test carried out with test piece including high strength steel.
Technical Paper

Development of Pedestrian Protection Analyzing Technologies and Its Applications

2003-10-27
2003-01-2807
This paper introduces a development of pedestrian protection analyzing technologies and its practical application to an actual automobile. The analyzing technologies have two types, an analyzing tool for initial design stage utilizing Microsoft Excel and a crash analyzing software MADYMO, and a large scale FEM (Finite Element Method) utilizing a crash analyzing software PAM-CRASH. These technologies were applied to an actual car development to study the efficient structure. In this paper, a development of a bumper structure with high leg protection performance is reported. The developed bumper was tested and evaluated on an actual vehicle and was proven to have high leg protection performance. The leg protection analyzing technology could estimate the leg injury of a actual vehicle test within 10% prediction error.
Technical Paper

New 440MPa High-Strength Steel for Vehicle Outer-Panel

2003-10-27
2003-01-2832
New 440MPa class high-strength steel, which had high r-value(1.6) and elongation(38%), was applied to outer-panel for the first time in the world. In this development FEM simulation was carried out to clarify the necessary steel properties, and the production conditions in strip mill were established. 10-kg weight reduction was realized by using this steel.
Technical Paper

Fatigue life prediction for welded steel sheet structures

2003-10-27
2003-01-2878
In this paper the fatigue life of welded steel sheet structures is predicted by using FE-Fatigue, which is one of fatigue analysis software tools on the market, and these predicted results are evaluated by reference to corresponding experimental results. Also, we try to predict these structures by using two fatigue life prediction theories established by the JSAE fatigue and reliability committee to compare prediction results. It was confirmed that spot welds fatigue life predictions agree qualitatively with corresponding experimental results and arc welds fatigue life predictions are in good agreement with corresponding experimental results in cases where the SN curve database is modified appropriately.
Technical Paper

Integration of process operation in the fatigue calculation of sheets structural parts

2003-10-27
2003-01-2879
The main operations for the manufacturing of auto parts are the cutting of the flange and the stamping. In order to perform accurate fatigue calculation it is necessary to have the material properties for each point of the structure. Usually, only the fatigue curve obtained on the flat sheet with polished edges is used because it represents the basic metal behaviour. The real edge quality decreases the fatigue limit while the hardening induced by the stamping increases it. To take these effects into account allows a better fatigue calculation of the structural part.
Technical Paper

Development of Titanium Engine Valves for Motorcycles

2003-09-16
2003-32-0033
Recently, it has been expected that titanium alloy valves will be adopted at extremely high rate to motorcycle engines where higher engine performance is required than in automobiles. However, there were difficulties with respect to reliability required for motorcycle engines. The reason for this is that engine valves of motorcycle engines are not only smaller in stem diameter, but also used at a higher maximum engine speed than those of automobile engines. This study is about a development of titanium alloy engine valves that meet reliability requirements in motorcycle engines.
Technical Paper

Numerical Analysis of Thermal Stress Distribution in Metal Substrates for Catalytic Converters

2002-03-04
2002-01-0060
In order to quantitatively evaluate mechanical durability of metal substrates for catalytic converters under heat cycles, thermal stresses and strains were simulated by FEM elastic-plastic analysis. Flat and corrugated sheets constituting honeycomb structures were directly modeled by thick-shell elements without replacing the structures with equivalent solid elements. It was reported that an asymmetric joint structure with “Strengthened Outer Layer” could provide metal substrates with high mechanical durability against heat cycles and the results of analysis in this study could show their high durability. It is important for improvement of mechanical durability to control the location of initial cracks generation and the direction of their propagation.
Technical Paper

Effect of Strengthening Mechanism on Fatigue Properties of Hot-Rolled Sheet Steels

2002-03-04
2002-01-0042
The influence of tensile strength on fatigue strength and the effect of strengthening mechanism on fatigue notch factor were investigated into conventional mild steels, HSLA steels, DP steels and TRIP steels. The grade of studied steels was altered from 440MPa to 780MPa. Not only smooth fatigue specimens with side surface ground and smooth fatigue specimens with laser-cut side surface but also fatigue specimens with a pierced hole were prepared for each of steel sheets. Fatigue tests were conducted in an axial load method. These experiments made it clear that the fatigue limits of smooth specimen increase along the tensile strength approximately independent of strengthening mechanism but those of notched specimen do not necessarily increase along the tensile strength. Namely, fatigue limits of DP steels and TRIP steels with notch increase in proportion to tensile strength although those of HSLA steels with notch do not increase.
Technical Paper

Crashworthiness Improvement of the Side Crash by the Work Hardening Effect of Pre-Strained High Strength Steel

2001-10-16
2001-01-3112
In order to examine the compatibility of improvement of crashworthiness with weight saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. Material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behavior of materials at a bend crush speed range (∼55km/h). It was confirmed that the strength of steel measured by one bar method was raised remarkably after press and hydro forming of high strength steels. It was also confirmed by FEM analysis and load drop test that absorbed energy of bend crush was improved by pre-strain effect. Further, we proved that absorbed energy of bend crush was also improved by appropriate design of thickness and the ratio of bend span and plate length. These effects are applicable to respective high strength steels.
Technical Paper

Utilization of Waste Vegetable Oil Methyl Ester for Diesel Fuel

2001-05-07
2001-01-2021
Considerable amounts (400 ∼ 600 thousand tons) of waste vegetable oil in Japan are still flushed down the drain every year. Utilization of waste vegetable oil for diesel fuel leads to two advantages for environmental protection, to reduce CO2 emission from engines and to avoid water pollution of rivers. In this study, combustion characteristics of waste vegetable oil methyl ester (WME) are investigated in detail by not only engine test run but also observation of burning flames in a visual engine. As results indicate, WME shows rather better combustion state in the visual engine and lower smoke emission from a high-speed DI test engine than gas oil. Moreover, by emulsifying WME with water, further improvement of combustion and more than 18 % reduction of NOx emission is carried out.
Technical Paper

Comparison between Experiments and FEM Simulation of High Velocity Tensile Test Methods to Clarify Test Method's Influence of High Strength Steel

2000-10-03
2000-01-2725
In order to examine the compatibility of improvement of crashworthiness with weight-saving of automobiles by using high strength steel, a combination analysis of Finite Element Method and Dynamic Mechanical Properties has been established. The material properties used in this analysis have been measured by “one bar method” high velocity tensile tests, which can examine the deformation behaviour of materials at an actual crash speed range (∼55km/h). As for the accuracy of this system, comparison between experiments and FEM simulation both of this test machine and other high-velocity-tensile-test machines have clarified the feature of one bar method and the metallurgical features of high velocity deformation. It was confirmed that the stress-strain curve measured by the one bar method agreed with that measured by the modified Split Hopkinson pressure bar method.
X