Refine Your Search

Topic

Search Results

Technical Paper

Steady State Characterization of Arcing in 540 V dc Distribution Systems

2017-09-19
2017-01-2035
As applications in aerospace, transportation and data centers are faced with increased electric power consumption, their dc operating voltages have increased to reduce cable weight and to improve efficiency. Electric arcs in these systems still cause dangerous fault conditions and have garnered more attention in recent years. Arcs can be classified as either low impedance or high impedance arcs and both can cause insulation damage and fires. Low impedance arcs release lots of energy when high voltage becomes nearly shorted to ground. High impedance arcs can occur when two current-carrying electrodes are separated, either by vibration of a loose connection or by cables snapping. The high impedance arc decreases load current due to a higher equivalent load impedance seen by the source. This complicates the differentiation of a high impedance arc fault from normal operation.
Technical Paper

Evaluation of DIC Based Forming Limit Curve Methods at Various Temperatures of Aluminum Alloys for Automotive Applications

2017-03-28
2017-01-0309
Aluminum alloys are increasingly utilized in automotive body panels and crash components to reduce weight. Accurately assessing formability of the sheet metal can reduce design iteration and tooling tryouts to obtain the desired geometry in aluminum stampings. The current ISO forming limit curve (FLC) procedure is a position dependent technique which produces the FLC based on extrapolation at the crack location. As aluminum sheet metal use increases in manufacturing, accurate determination of the forming limits of this material will be necessary prior to production. New time dependent methods using digital imaging correlation (DIC) account for variations in material behavior by continuously collecting strain data through the material necking point. This allows more accurate FLC determination that is necessary for efficient design in the automotive stamping industry.
Journal Article

Development of a Non-Linear Clutch Damper Experiment Exhibiting Transient Dynamics

2015-06-15
2015-01-2189
Many powertrain structural sub-systems are often tested under steady state conditions on a dynamometer or in a full vehicle. This process (while necessary) is costly and time intensive, especially when evaluating the effect of component properties on transient phenomena, such as driveline clunk. This paper proposes a laboratory experiment that provides the following: 1) a bench experiment that demonstrates transient behavior of a non-linear clutch damper under non-rotating conditions, 2) a process to efficiently evaluate multiple non-linear clutch dampers, and 3) generates benchmark time domain data for validation of non-linear driveline simulation codes. The design of this experiment is based on a previous experimental work on clunk. A commercially available non-linear clutch damper is selected and the experiment is sized accordingly. The stiffness and hysteresis properties of the clutch damper are assumed from the measured quasi-static torque curve provided by the manufacturer.
Technical Paper

Effect of Flow on Helmholtz Resonator Acoustics: A Three-Dimensional Computational Study vs. Experiments

2011-05-17
2011-01-1521
The effectiveness of the Helmholtz resonator as a narrow band acoustic attenuator, particularly at low frequencies, makes it a highly desirable component in a wide variety of applications, including engine breathing systems. The present study investigates the influence of mean flow grazing over the neck of such a configuration on its acoustic performance both computationally and experimentally. Three-dimensional unsteady, turbulent, and compressible Navier-Stokes equations are solved by using the Pressure-Implicit-Splitting-of-Operators algorithm in STAR-CD to determine the time-dependent flow field. The introduction of mean flow in the main duct is shown to reduce the peak transmission loss and shift the fundamental resonance frequency to a higher value.
Journal Article

Model Based Engine Control Development and Hardware-in-the-Loop Testing for the EcoCAR Advanced Vehicle Competition

2011-04-12
2011-01-1297
When developing a new engine control strategy, some of the important issues are cost, resource minimization, and quality improvement. This paper outlines how a model based approach was used to develop an engine control strategy for an Extended Range Electric Vehicle (EREV). The outlined approach allowed the development team to minimize the required number of experiments and to complete much of the control development and calibration before implementing the control strategy in the vehicle. It will be shown how models of different fidelity, from map-based models, to mean value models, to 1-D gas dynamics models were generated and used to develop the engine control system. The application of real time capable models for Hardware-in-the-Loop testing will also be shown.
Journal Article

Ignition Delay Correlation for Predicting Autoignition of a Toluene Reference Fuel Blend in Spark Ignition Engines

2011-04-12
2011-01-0338
An ignition delay correlation was developed for a toluene reference fuel (TRF) blend that is representative of automotive gasoline fuels exhibiting two-stage ignition. Ignition delay times for the autoignition of a TRF 91 blend with an antiknock index of 91 were predicted through extensive chemical kinetic modeling in CHEMKIN for a constant volume reactor. The development of the correlation involved determining nonlinear least squares curve fits for these ignition delay predictions corresponding to different inlet pressures and temperatures, a number of fuel-air equivalence ratios, and a range of exhaust gas recirculation (EGR) rates. In addition to NO control, EGR is increasingly being utilized for managing combustion phasing in spark ignition (SI) engines to mitigate knock. Therefore, along with other operating parameters, the effects of EGR on autoignition have been incorporated in the correlation to address the need for predicting ignition delay in SI engines operating with EGR.
Technical Paper

Model-Based Characterization and Analysis of Diesel Engines with Two-Stage Turbochargers

2010-04-12
2010-01-1220
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations.
Technical Paper

Welding Characteristics in Deformation Resistance Welding

2008-04-14
2008-01-1137
Deformation Resistance Welding (DRW) is a process that employs resistance heating to raise the temperature of the materials being welded to the appropriate forging range, followed by shear deformation which increases the contacting surface area of the materials being welded. Because DRW is a new process, it became desirable to establish variable selection strategies which can be integrated into a production procedure. A factorial design of experiment was used to examine the influence of force, number of pulses, and weld cycles (heating/cooling time ratio) on the DRW process. Welded samples were tensile tested to determine their strength. Once tensile testing was complete, the resulting strengths were observed and compared to corresponding percent heat and percent reduction in thickness. Tensile strengths ranged from 107 kN to 22.2 kN. A relationship between the maximum current and the weld variables was established.
Technical Paper

Application of Conductive Heat Resistance Seam Welding for Joining a 7075-T6 Alloy and a 5754 Dissimilar Thickness Combination

1999-09-28
1999-01-3162
Conductive heat resistance seam welding (CHRSEW) is a new process developed at Edison Welding Institute for creating butt joints on aluminum sheet. The process uses conventional resistance seam welding equipment, and takes advantage of steel cover sheets on either side of the intended joint. Resulting joints are fusion in character, and can be manufactured at very high welding speeds (∼ 3 to 4 m/min). In this study, the conductive heat resistance seam welding process was extended to some new applications. These included joining a 7075-T6 alloy, and a dissimilar thickness 1- to 2-mm 5754 configuration. The former is generally considered unweldable by fusion methods, and is of considerable interest for aerospace applications. The latter is representative of a tailor welded blank for automotive applications. Resulting welds were evaluated using metallurgical examinations and mechanical testing.
Technical Paper

Laser Lap Welding of Galvanized Steel with No Gap

1999-09-28
1999-01-3145
Laser welding has long been evaluated as a joining technique for galvanized steels in a lap-joint configuration in the automotive industry. However, a problem associated with the low boiling point of zinc limits the application of the laser process in a lap-joint configuration. Zinc-coatings at the interface of the two coated sheets vaporize during welding and the volume of the zinc vapor expands rapidly. The venting of the zinc vapor from the weld pool causes expulsion of the molten metal during welding and a portion of zinc vapor remains in the weld as porosity after welding. To improve the weld quality of galvanized steel, many efforts have been attempted worldwide, but limited success has been reported. Edison Welding Institute (EWI) investigated the laser weldability of galvanized steel in a lap-joint configuration with no gap using a dual beam laser welding technique.
Technical Paper

Vibration Weldability Study for Painted Plastics

1999-05-10
1999-01-1628
Weldability study has been performed on Polypropylene (PP) and PC/ABS samples to investigate how the paint layer along the weld joint affects the vibration weldability. The plastic used for this study were PP representing semicrystalline thermoplastics and PC/ABS representing amorphous thermoplastics. Both resins were molded to generate sample plaques for the study. Design of Experiment (DOE) studies were initially conducted with unpainted plaques and then repeated with the painted plaques for comparison. Optimal welding parameters were determined through DOE and the maximum weld strength under optimized welding conditions were determined and compared. Following each DOE, a regression analysis, using the weld strength as a response, was performed.
Technical Paper

Recent Developments in Friction Stir Welding

1998-06-02
981875
Friction stir welding (FSW) is a new welding process developed at The Welding Institute in Cambridge, U.K. This process uses a non-consumable rotating third body to generate frictional heat and create forging to facilitate continuous solid-state joints. In this paper, the current state of the art of FSW is discussed. A preliminary description of the process is provided, followed by the results of some relatively simple thermal modeling. The modeling results are used to provide a description of temperature distributions in FSW, as well as illustrate the effects of variations in process conditions. Representative microstructures of FSW on an Al 6061 alloy are then presented. Properties of these friction stir welds are then discussed and compared to those of both the base metal and to comparable GTAW welds. Some discussion is then given to the effects of section thickness on FSW. Examples are given of friction stir welds on aluminum alloys ranging from 2 to 30 mm in thickness.
Technical Paper

Improving Fillet Weld Fatigue Performance by Improving Weld Shape

1998-04-08
981509
The fatigue performance of fillet-welded transverse attachments was compared for several procedure variants for both FCAW and SAW on ½ in. steel plates. Measurements of weld toe shape on adjacent pieces of weld indicated that smoother weld toes, as evidenced by larger weld toe radius, were correlated to improved fatigue performance for both processes. Fatigue tests conducted on 59 and 109 ksi yield strength plates did not show an effect of plate strength. Weld procedures designed to provide smooth toes, such as reduced parameter FCAW beads at horizontal weld toes and flat position FCAW at higher heat inputs, were shown to provide fatigue performances near post-weld improved fillets.
Technical Paper

NVH Research Facilities at The Ohio State University: Existing Facilities and Envisioned Enhancements

1997-05-20
971899
The automotive NVH research infrastructure at Ohio State includes the Center for Automotive Research, the Acoustics and Dynamics Laboratory, and the Gear Dynamics and Gear Noise Research Laboratory. This paper describes the facilities of these laboratories. Two unique existing facilities, namely the transmission error measurement of gears and a laboratory for the experimental measurement of engine breathing systems, will be emphasized. Also covered are the enhancements that are envisioned through a recent grant from the Ohio Board of Regents.
Technical Paper

Experimental Verification of Design Charts for Acoustic Absorbers

1997-05-20
971951
Design charts which predict acoustic absorption of porous insulators were verified experimentally using the two-microphone technique to measure the normal incidence absorption coefficient of three glass fiber materials in two different arrangements - a single-layer sample and a single layer in front of an air space, each backed by a rigid termination. The specific flow resistivities of the materials ranged from 2,000 to 52,000 mks rayls/m. Experimentally determined absorption coefficients were in agreement with those predicted by the design charts. The results indicate that these charts could be a useful tool in designing sound absorbers for practical applications.
Technical Paper

Dynamic Analysis of Layshaft Gears in Automotive Transmission

1997-05-20
971964
In this paper, we will present parametric results of performing dynamic analysis of layshaft gear trains typically used in automotive transmissions with emphasis on the vibratory response due to transmission error excitation. A three-dimensional multiple degrees of freedom lumped parameter dynamic model of a generic layshaft type geared rotor system (with three parallel rotating shafts coupled by two sets of gear pairs) has been formulated analytically. The model includes the effects of both rotational and translational displacements of each gears, and bounce and pitch motions of the counter-shaft. The natural frequencies and mode shapes are computed numerically by solving an eigenvalue problem derived from applying harmonic solutions to the equations of motion. The complete set of mode shapes are then used in forced response calculations based on the modal expansion method to predict gear accelerations, dynamic transmission errors, mesh force and bearing loads.
Technical Paper

The Impact of Injection Timing on In-Cylinder Fuel Distribution in a Natural Gas Powered Engine

1997-05-01
971708
One obstacle hindering the use of port fuel injection in natural gas engines is poor idle performance due to incomplete mixing of the cylinder charge prior to ignition. Fuel injection timing has a strong influence on the mixing process. The purpose of this work is to determine the impact of fuel injection timing on in-cylinder fuel distribution. Equivalence ratio maps have been acquired by Planar Laser Induced Fluorescence in an optical engine with a production cylinder head. Experimental results have been used to determine the injection timing which produces the most uniform fuel distribution for the given engine.
Technical Paper

Welding Residual Stresses in Splicing Heavy Section Shapes

1997-04-07
971585
Welding residual stress is one of the primary factors responsible for cracking at the access hole interface between the flange and web plate of welded heavy W-shapes. During multi-pass welding, cracks can be found in either the flange plate or the web plate, depending upon welding sequence, joint details and access hole size. In this study, an integrated numerical and experimental investigation was conducted to evaluate the effects of welding parameters and joint geometry on the magnitude and distribution of residual stresses in thick-section butt joints. The results provide guidelines for improved design for welding of heavy W-shapes.
Technical Paper

The Application of Fuzzy Logic to the Diagnosis of Automotive Systems

1997-02-24
970208
The evolution of the diagnostic equipment for automotive application is the direct effect of the implementation of sophisticated and high technology control systems in the new generation of passenger cars. One of the most challenging issues in automotive diagnostics is the ability to assess, to analyze, and to integrate all the information and data supplied by the vehicle's on-board computer. The data available might be in the form of fault codes or sensors and actuators voltages. Moreover, as environmental regulations get more stringent, knowledge of the concentration of different species emitted from the tailpipe during the inspection and maintenance programs can become of great importance for an integrated powertrain diagnostic system. A knowledge-based diagnostic tool is one of the approaches that can be adopted to carry out the challenging task of detecting and diagnosing faults related to the emissions control system in an automobile.
Technical Paper

A Study of In-Cylinder Mixing in a Natural Gas Powered Engine by Planar Laser-Induced Fluorcence

1996-05-01
961102
There is currently a large effort in industry to make natural gas a viable alternative fuel for internal combustion engines. While the use of natural gas offers several advantages such as reduced emissions and potentially higher efficiency, it also has some inherent difficulties. Among these is the challenge of producing a consistently homogeneous air/fuel mixture while retaining the advantages which accompany modern, multi-point, fuel injection systems. The purpose of the research described here is to investigate the in-cylinder mixture formation process in a port injected natural gas fueled engine. Planar laser-induced fluorescence has been used to produce qualitative air fuel ratio maps in the engine cylinder, in selected planes, throughout the intake and compression strokes. The process consists of impinging a sheet of ultraviolet laser light on various planes parallel to, and normal to, the cylinder axis.
X