Refine Your Search

Topic

Author

Search Results

Technical Paper

Modular Multilevel GaN Based Ultra-High Power Density Electric Power Conversion and Transmission on the Lunar Surface

2023-09-05
2023-01-1509
NASA’s Watts on the Moon Challenge is seeking solutions to transfer at least 1.065 kW power from a 120 V dc source to a 24-32 V dc load over a 3-km distance under the same environmental conditions as the Lunar surface (i.e., 77 K temperature and 1 mTorr pressure). The selected solution from the author’s team proposed utilizing two modular multilevel Gallium Nitride (GaN) based isolated dc-dc converters to connect the 120 V dc source with the 24-32 V dc load bank via 1.5 kV rated dc transmission lines. The modular multilevel converters feature frequency multiplication, high step-down voltage ratio and low device voltage stress. In the converters, GaN gate injection transistor (GaN GIT) and GaN High-Electron-Mobility Transistor (GaN HEMT) devices are chosen as switching devices, due to the merits of lower power loss, radiation hardness and ability to work under cryogenic and vacuum conditions.
Technical Paper

Model-Based Fault Diagnostic Strategy for Microgrids

2023-09-05
2023-01-1506
Microgrids are a topic of interest in recent years, largely due to their compatibility with the integration of distributed renewable resources, capability for bidirectional power flow, and ability to reconfigure to mitigate the effects of faults. Fault diagnosis algorithms are a foundational technology for microgrids. These algorithms must have two primary capabilities. First, faults must be detectable; it is known when the fault occurs. Second, faults must be isolable; the type and location of detected faults can be determined. However, most fault handling research considering microgrids has focused on the protection algorithm. Protection algorithms seek to quickly extinguish dangerous faults which can damage components. However, these algorithms may not sufficiently capture less severe faults, or provide comprehensive monitoring for the microgrid. This is particularly relevant when considering applications involving fault tolerant control or dynamic grid reconfiguration.
Technical Paper

Towards H2 High-Performance IC Engines: Strategies for Control and Abatement of Pollutant Emissions

2023-08-28
2023-24-0108
In future decarbonized scenarios, hydrogen is widely considered as one of the best alternative fuels for internal combustion engines, allowing to achieve zero CO2 emissions at the tailpipe. However, NOx emissions represent the predominant pollutants and their production has to be controlled. In this work different strategies for the control and abatement of pollutant emissions on a H2-fueled high-performance V8 twin turbo 3.9L IC engine are tested. The characterization of pollutant production on a single-cylinder configuration is carried out by means of the 1D code Gasdyn, considering lean and homogeneous conditions. The NOx are extremely low in lean conditions with respect to the emissions legislation limits, while the maximum mass flow rate remains below the turbocharger technical constraint limit at λ=1 only.
Technical Paper

Multi-Physics Simulations of Ice Shedding from Wind Turbines

2023-06-15
2023-01-1479
Wind turbines in cold climates are likely to suffer from icing events, deteriorating the aerodynamic performances of the blades and decreasing their power output. Continuous ice accretion causes an increase in the ice mass and, consequently, in the centrifugal force to which the ice shape is subjected. This can result in the shedding of chunks of ice, which can jeopardize the aeroelastic properties of the blade and, most importantly, the safety of the surrounding people and of the wind turbine structure itself. In this work, ice shedding analysis is performed on a quasi-3D, multi-step ice geometry accreted on the NREL 5MW reference wind turbine. A preliminary investigation is performed by including the presence of an ice protection system to decrease the adhesion surface of the ice on the blade. A reference test case with a simple geometry is used as verification for the correct implementation of the procedure.
Technical Paper

A Comprehensive Numerical Model for Numerical Simulation of Ice Accretion and Electro-Thermal Ice Protection System in Anti-icing and De-icing Mode, with an Ice Shedding Analysis

2023-06-15
2023-01-1463
This work presents a comprehensive numerical model for ice accretion and Ice Protection System (IPS) simulation over a 2D component, such as an airfoil. The model is based on the Myers model for ice accretion and extended to include the possibility of a heated substratum. Six different icing conditions that can occur during in-flight ice accretion with an Electro-Thermal Ice Protection System (ETIPS) activated are identified. Each condition presents one or more layers with a different water phase. Depending on the heat fluxes, there could be only liquid water, ice, or a combination of both on the substratum. The possible layers are the ice layer on the substratum, the running liquid film over ice or substratum, and the static liquid film between ice and substratum caused by ice melting. The last layer, which is always present, is the substratum. The physical model that describes the evolution of these layers is based on the Stefan problem. For each layer, one heat equation is solved.
Technical Paper

Shared Autonomous Vehicle Mobility for a Transportation Underserved City

2023-04-11
2023-01-0048
This paper proposes the use of an on-demand, ride hailed and ride-Shared Autonomous Vehicle (SAV) service as a feasible solution to serve the mobility needs of a small city where fixed route, circulator type public transportation may be too expensive to operate. The presented work builds upon our earlier work that modeled the city of Marysville, Ohio as an example of such a city, with realistic traffic behavior, and trip requests. A simple SAV dispatcher is implemented to model the behavior of the proposed on-demand mobility service. The goal of the service is to optimally distribute SAVs along the network to allocate passengers and shared rides. The pickup and drop-off locations are strategically placed along the network to provide mobility from affordable housing, which are also transit deserts, to locations corresponding to jobs and other opportunities.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head and Neck Complex Finite Element Model

2023-04-11
2023-01-0557
The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) to improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) ATD. The improvements of the LODC over the HIII-10C include changes in sub-assemblies such as the head and neck, where the LODC head is a redesigned HIII-10C head with pediatric mass properties and the neck has a modified atlanto-occipital joint to replicate observations made from human specimens. The current study focuses on developing a dynamic, nonlinear finite element (FE) model of the LODC ATD head and neck complex. The FE mesh is generated using HyperMesh based on the three-dimensional CAD model. The material data, contact definitions and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The initial and boundary conditions are defined to replicate the neck flexion experimental tests.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions.
Journal Article

Comparison of Child Restraint System (CRS) Installation Methods and Misuse During Far-Side Impact Sled Testing

2023-04-11
2023-01-0817
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso.
Technical Paper

CFD Modeling of a DME CI Engine in Late-PCCI Operating Conditions

2023-04-11
2023-01-0203
Predictive combustion models are useful tools towards the development of clean and efficient engines operating with alternative fuels. This work intends to validate two different combustion models on compression-ignition engines fueled with Dimethyl Ether. Both approaches give a detailed characterization of the combustion kinetics, but they substantially differ in how the interaction between fluid-dynamics and chemistry is treated. The first one is single-flamelet Representative Interactive Flamelet, which considers turbulence-kinetic interaction but cannot correctly describe the stabilization of the flame. The second, named Tabulated Well Mixed, correctly accounts for local flow and mixture conditions but does not consider interaction between turbulence and chemistry. An experimental campaign was carried out on a heavy-duty truck engine running on DME at a constant load considering trade-off of EGR and SOI.
Technical Paper

Mobile Safety Application for Pedestrians Utilizing P2V Communication over Bluetooth

2022-03-29
2022-01-0155
Vulnerable Road User (VRU) safety has been an important issue throughout the years as corresponding fatality numbers in traffic have been increasing each year. With the developments in connected vehicle technology, there are new and easier ways of implementing Vehicle to Everything (V2X) communication which can be utilized to provide safety and early warning benefits for VRUs. Mobile phones are one important point of interest with their sensors being increased in quantity and quality and improved in terms of accuracy. Bluetooth and extended Bluetooth technology in mobile phones has enhanced support to carry larger chunks of information to longer distances. The work we discuss in this paper is related to a mobile application that utilizes the mobile phone sensors and Bluetooth communication to implement Personal Safety Message (PSM) broadcast using the SAE J2735 standard to create a Pedestrian to Vehicle (P2V) based safety warning structure.
Technical Paper

Advanced Turbulence Model for SI Combustion in a Heavy-Duty NG Engine

2022-03-29
2022-01-0384
In the recent years, the interest in heavy-duty engines fueled with Compressed Natural Gas (CNG) is increasing due to the necessity to comply with the stringent CO2 limitation imposed by national and international regulations. Indeed, the reduced number of carbon atoms of the NG molecule allows to reduce the CO2 emissions compared to a conventional fuel. The possibility to produce synthetic methane from renewable energy sources, or bio-methane from agricultural biomass and/or animal waste, contributes to support the switch from conventional liquid fuels to CNG. To drive the engine development and reduce the time-to-market, the employment of numerical analysis is mandatory. This requires a continuous improvement of the simulation models toward real predictive analyses able to reduce the experimental R&D efforts. In this framework, 1D numerical codes are fundamental tools for system design, energy management optimization, and so on.
Technical Paper

Combustion Modeling in a Heavy-Duty Engine Operating with DME Using Detailed Kinetics and Turbulence Chemistry Interaction

2022-03-29
2022-01-0393
Dimethyl ether (DME) represents a promising fuel for heavy-duty engines thanks to its high cetane number, volatility, absence of aromatics, reduced tank-to-wheel CO2 emissions compared to Diesel fuel and the possibility to be produced from renewable energy sources. However, optimization of compression-ignition engines fueled with DME requires suitable computational tools to design dedicated injection and combustion systems: reduced injection pressures and increased nozzle diameters are expected compared to conventional Diesel engines, which influences both the air-fuel mixing and the combustion process. This work intends to evaluate the validity of two different combustion models for the prediction of performance and pollutant emissions in compression-ignition engines operating with DME. The first one is the Representative Interactive Flamelet while the second is the Approximated Diffusive Flamelet.
Technical Paper

Modeling Fuel-Air Mixing, Combustion and Soot Formation with Ducted Fuel Injection Using Tabulated Kinetics

2022-03-29
2022-01-0403
Ducted Fuel Injection (DFI) has the potential to reduce soot emissions in Diesel engines thanks to the enhanced mixing rate resulting from the liquid fuel flow through a small cylindrical pipe located at a certain distance from the nozzle injector hole. A consolidated set of experiments in constant-volume vessel and engine allowed to understand the effects of ambient conditions, duct geometry and shape on fuel-air mixing, combustion and soot formation. However, implementation of this promising technology in compression-ignition engines requires predictive numerical models that can properly support the design of combustion systems in a wide range of operating conditions. This work presents a computational methodology to predict fuel-air mixing and combustion with ducted fuel injection. Attention is mainly focused on turbulence and combustion modelling.
Technical Paper

Comparative Analysis of Protection Systems for DC Power Distribution in Electrified Vehicles

2022-03-29
2022-01-0135
Electric transportation has the potential of mitigating CO2 emissions and reduce fuel needs. One of the challenges for the growth of this industry is limited range and efficiency of the vehicles associated with battery storage systems and electric drive technology. High voltage systems are expected to increase efficiency and then vehicle mileage, however this increases the severity of the fault conditions, especially in case of short circuit. Melting fuse is commonly used for the purpose of protection in electrified vehicles, while it is effective and reliable, there are several shortcomings such as lack of precision, effect of ambient temperature, bulky, interruption time depending on the fault condition etc. Additionally, the on-board DC power distribution system (PDS) is characterized by low impedance, in this environment fuses are not able to limit the fault current leading to damage of electronics and hazard for the battery pack.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Journal Article

CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel

2021-04-06
2021-01-0409
Computational fluid dynamics (CFD) modeling has many potentials for the design and calibration of modern and future engine concepts, including facilitating the exploration of operation conditions and casting light on the involved physical and chemical phenomena. As more attention is paid to the matching of different fuel types and combustion strategies, the use of detailed chemistry in characterizing auto-ignition, flame stabilization processes and the formation of pollutant emissions is becoming critical, yet computationally intensive. Therefore, there is much interest in using tabulated approaches to account for detailed chemistry with an affordable computational cost. In the present work, the tabulated flamelet progress variable approach (TFPV), based on flamelet assumptions, was investigated and validated by simulating constant-volume Diesel combustion with primary reference fuels - binary mixtures of n-heptane and iso-octane.
Technical Paper

Child Restraint Systems (CRS) with Minor Installation Incompatibilities in Far Side Impacts

2021-04-06
2021-01-0915
Side impacts are disproportionately injurious for children compared to other crash directions. Far side impacts allow for substantial translation and rotation of child restraint systems (CRS) because the CRS does not typically interact with any adjacent structures. The goal of this study is to determine whether minor installation incompatibilities between CRS and vehicle seats cause safety issues in far side crashes. Four non-ideal CRS installation conditions were compared against control conditions having good fit. Two repetitions of each condition were run. The conditions tested were: 1) rear-facing (RF) CRS installed with a pool noodle to create proper recline angle, 2) RF CRS with narrow base, 3) forward-facing (FF) CRS with gap behind back near seat bight (i.e., vehicle seat angle too acute for CRS), 4) FF CRS with gap behind back near top of CRS (i.e., vehicle seat angle too obtuse for CRS). Second row captain’s chairs were set up at 10° anterior of lateral.
Technical Paper

Numerical Optimization of a SCR System Based on the Injection of Pure Gaseous Ammonia for the NOx Reduction in Light-Duty Diesel Engines

2020-04-14
2020-01-0356
Selective Catalytic Reduction (SCR) systems are nowadays widely applied for the reduction of NOx emitted from Diesel engines. The typical process is based on the injection of aqueous urea in the exhaust gases before the SCR catalyst, which determines the production of the ammonia needed for the catalytic reduction of NOx. However, this technology is affected by two main limitations: a) the evaporation of the urea water solution (UWS) requires a sufficiently high temperature of the exhaust gases and b) the formation of solid deposits during the UWS evaporation is a frequent phenomenon which compromise the correct operation of the system. In this context, to overcome these issues, a technology based on the injection of gaseous ammonia has been recently proposed: in this case, ammonia is stored at the solid state in a cartridge containing a Strontium Chloride salt and it is desorbed by means of electrical heating.
X