Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Lateral Injury Criteria for the 6-year-old Pedestrian - Part I: Criteria for the Head, Neck, Thorax, Abdomen and Pelvis

2004-03-08
2004-01-0323
Pediatric pedestrians are frequently involved in Pedestrian versus Motor Vehicle Collisions (PMVCs). While in recent years, the automotive industry has worked towards making cars less aggressive to pedestrians, the efforts have mainly focused on adult pedestrian safety. When they have included considerations for children, only head injuries have been evaluated. The development of automotive counter-measures that provide protection for both adult and pediatric pedestrians requires access to injury criteria for the entire body that specifically account for both the age-dependent tissue properties and the pedestrian's size. The objective of the present study is to derive lateral injury criteria for the head, neck, thorax, abdomen and pelvis that can be used in finite element and multi-body simulations of PMVCs involving the 6-year-old pedestrian (corresponding injury criteria for the upper and lower extremities are derived in part II of this study).
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

Lateral Injury Criteria for the 6-year-old Pedestrian - Part II: Criteria for the Upper and Lower Extremities

2004-03-08
2004-01-1755
Pediatric pedestrians are frequently involved in Pedestrian versus Motor Vehicle Collisions (PMVCs). While in recent years, the automotive industry has worked towards making cars less aggressive to pedestrians, the efforts have mainly focused on adult pedestrian safety. When they have included considerations for children, only head injuries have been evaluated. The development of automotive countermeasures that provide protection for both adult and pediatric pedestrians requires access to injury criteria for the entire body that specifically account for both the age-dependent tissue properties and the pedestrian's size. The objective of the present study is to derive lateral injury criteria for the upper and lower extremities that can be used in finite element and multi-body simulations of PMVCs involving the 6-year-old pedestrian (corresponding injury criteria for the head, neck, thorax, abdomen and pelvis are derived in part I of this study).
X