Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Inter-Laboratory Characterization of Biot Parameters of Poro-Elastic Materials for Automotive Applications

2020-09-30
2020-01-1523
Automotive suppliers provide multi-layer trims mainly made of porous materials. They have a real expertise on the characterization and the modeling of poro-elastic materials. A dozen parameters are used to characterize the acoustical and elastical behavior of such materials. The recent vibro-acoustic simulation tools enable to take into account this type of material but require the Biot parameters as input. Several characterization methods exist and the question of reproducibility and confidence in the parameters arises. A Round Robin test was conducted on three poro-elastic material with four laboratories. Compared to other Round Robin test on the characterization of acoustical and elastical parameters of porous material, this one is more specific since the four laboratories are familiar with automotive applications. Methods and results are compared and discussed in this work.
Technical Paper

Calculation Process with Lattice Boltzmann and Finite Element Methods to Choose the Best Exterior Design for Wind Noise

2019-06-05
2019-01-1471
Wind noise in automobile is becoming more and more important as the customer expectations increase. On the other hand, great progress has been made on engine and road noises, especially for electric and hybrid vehicles. Thus, the wind noise is now by far the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able, for a new car project, to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of the automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin may change significantly with only a small modification of the exterior design.
Technical Paper

Influence of the Micro- and Macro-Structural Parameters on the Dynamic Behavior of Structures Made of Polymers Reinforced with Short Glass Fibers

2018-06-13
2018-01-1501
In order to design vehicles with diminished gCO2/km emissions level, car manufacturers aim at reducing the weight of their vehicles. One of the solutions advocated by the automotive industry consists in the replacement of metallic parts by lighter systems made of polymer reinforced composites. Unfortunately, the numerical simulations set to evaluate the vibratory and acoustic performances of systems made of this kind of materials are often not sufficiently effective and robust so that convincing test/simulation correlations are rarely met. Indeed, for polymer-based materials, numerous parameters affect the vibroacoustic behavior. On the one hand, it is well known that the viscoelastic properties (Storage -Young- and dissipative moduli) of polymers depend on the temperature, loading frequency and sometimes the humidity content.
Technical Paper

Simulation Strategy for Structure Borne Noise Sources: Use of Super Elements and Blocked Forces Tensors between Suppliers and OEMs to Validate Components at Early Design Stage

2018-06-13
2018-01-1509
This paper is a case study from the TESSA project (French funded research program “Transfert des Efforts des Sources Solidiennes Actives”). The general frame of the work was to assess a collaborative design process between a car manufacturer and a major supplier using FE modelling and condensation of structure borne noise sources as an alternative to classic specification method for structure borne sources. Super elements from different FE commercial softwares have been used to assess the reliability of the method, the compatibility of the softwares and, most important, the relevance of applying a blocked force tensor to the component super element to predict the interior contribution of a component which is the originality of this work. The case study is an internal combustion engine cooling module (fan + shroud + exchangers) from VALEO including all assembly details (clips, decoupling elements) modelled under ABAQUS and its integration in a RENAULT Espace under NASTRAN.
Technical Paper

Wind Noise Source Identification by Inverse Method in Wind Tunnel Test

2017-06-05
2017-01-1784
Wind noise in automobile is becoming more and more important as customer requirements increase. On the other hand great progress has been made on engine and road noises. Thus, for many vehicles, wind noise is the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able for a new car project to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin can sometimes change significantly with only a small modification of the exterior design.
Technical Paper

Steering Wheel Torque Rendering: Measure of Driver Discrimination Capabilities

2014-04-01
2014-01-0447
By the action on the steering wheel, the driver has the capability to control the trajectory of its vehicle. Nevertheless, the steering wheel has also the role of information provider to the driver. In particular, the torque level at the steering wheel informs the driver about the interaction between the vehicle and the road. This information flow is natural due to the mechanical chain between the road and the steering wheel. Many studies have shown that steering wheel torque feedback is crucial to ensure the control of the vehicle. In the context of uncoupled steering (steer-by-wire vehicle or driving simulators), the torque rendering on the steering wheel is a major challenge. In addition, of the trajectory control, the quality of this torque is a key for the immersion of drivers in virtual environment such as in driving simulators. The torque-rendering loop is composed of different steps.
Technical Paper

Fatigue Analysis of Conrod Bearing

2011-04-12
2011-01-0197
For many years, bearing suppliers have been using the specific pressure to evaluate the fatigue risk of conrod bearings. However, modern engines have made the bearing more sensitive to various phenomena such as the thermal expansion or the elasticity of the conrod housing. These effects modify the stresses in the bearing layers and consequently fatigue risk. In this paper, we propose a new way to determine the bearing fatigue resistance. To achieve that, we analyze the elastic and plastic behavior of the bearing along the engine life. We detail and provide the analytical relationships which determine stresses in the overlay and in the substrate of the bearing in order to analyze their fatigue resistance. Various physical loads are taken into account such as the thermal load, the hydrodynamic pressure field, the fitting load, the free spread load. A good knowledge of the relationships between those physical phenomena helps to understand the mechanical behavior of the bearing.
Technical Paper

French Program on the Impact of Engine Technology on Particulate Emissions, Size Distribution and Composition Heavy Duty Diesel Study

2005-04-11
2005-01-0190
An extensive research program involving the French passenger car and heavy-duty (HD) vehicles manufacturers, sponsored by ADEME and realized by IFP, aimed to characterize in terms of size and composition the particulate emitted by the different engine technologies currently or soon available. The impact of engine settings and fuel composition was also studied. Numerous information was collected in this HD study revealing that fuel composition and particularly non-conventional fuels and engine settings strongly impact the particulate concentration and size distribution. Nucleation is likely to occur when there is less adsorption matter, for instance when post-injection is used or EGR is removed. Particulate composition, particularly PAH and sulfates content, is weakly bound to the size. Mineral elements distribution depends on their origin, lubrication oil or engine wear.
Technical Paper

Applying Quasi-Multiphase Model to Simulate Atomization Processes in Diesel Engines: Modeling of the Slip Velocity

2005-04-11
2005-01-0220
Atomizing systems must be able to form sprays with predetermined characteristics. There are affected by the shape of the injector as well as external conditions. Thus, in order to avoid numerous experiments, this is necessary to develop predictive atomization models able to deal with the complete atomization process. This can be done using a Eulerian model for primary break-up. This approach describes the flow continuously from inside the injector to the dispersed spray region. In this paper the Eulerian multiphase approach and the Eulerian single-phase approach are compared and the results lead to an intermediate quasi-multiphase approach for describing the spray core. Finally a transition zone permits to represent the diluted spray region by using the classical Lagrangian approach to benefit of the experience accumulated on this method, in particular for the vaporization and the combustion.
Technical Paper

OSEKtime: A Dependable Real-Time Fault-Tolerant Operating System and Communication Layer as an Enabling Technology for By-Wire Applications

2000-03-06
2000-01-1051
The new generation of drive-by-wire systems currently under development has demanding requirements on the electronic architecture. Functions such as brake-by-wire or steer-by-wire require continued operation even in the presence of component failures. The electronic architecture must therefore provide fault-tolerance and real-time response. This in turn requires the operating system and the communication layer to be predictable, dependable and composable. It is well known that this properties are best supported by a time-triggered approach. A consortium consisting of German and French car manufacturers and suppliers, which aims at becoming a working group within the OSEK/VDX initiative, the OSEKtime consortium, is currently defining a specification for a time-triggered operating system and a fault-tolerant communication layer.1 The operating system and the communication layer are based on applicable interfaces of the OSEK/VDX standard.
Technical Paper

Fleet Management of the Future

1998-10-19
98C059
This paper deals with fleet management systems and the means to integrate new communication and computer technologies to improve transportation companies efficiency. It focuses on the integration of embedded electronic systems for communication and data management through the use of on-board computers, taking the point of view of the truck manufacturer. It introduces the idea of making the vehicle a nod of a complete communication network. After briefly presenting fleet management problematic and some of the major existing solutions, it analyzes how new technologies can be integrated and what major advantages they would bring.
Technical Paper

Behavior of a Vehicle During Turning

1985-01-01
856041
Renault believes that the behavior of the vehicle must always be consistent with the instantaneous orders given by the driver, whether braking, accelerating or lifting the foot off the accelerator. The vehicle must also inform its driver when it is near a point of limit. The first part of this paper details the vehicle with respect to its trajectory at stabilized speeds. The rigidity of the overall drift of the axle assemblies and tires, the steering angles induced by vehicle roll attitude, under- and over-steering behavior and vehicle roll attitude, under- and over-steering behavior and behavior of the tire under load are covered. A vehicle trajectory model is used to confirm test results.
Technical Paper

Comparison Tests Between Major European and North American Automotive Wind Tunnels

1983-02-01
830301
The results of comparative aerodynamic force measurements on a full-scale notchback-type vehicle, performed between 6 European companies operating full-scale automotive wind tunnels, were published in the SAE Paper 800140. Correlation tests with the same vehicle have been extended to 2 further European and 3 North American wind tunnels. First the geometry, the design and the flow data of the different wind tunnels is compared. The facilities compared include wind tunnels with open-test-sections, closed-test-sections and one tunnel with slotted side walls. The comparison of results, especially for drag coefficients, show that the correlation between the differently designed wind tunnels is reasonable. Problems of blockage correction are briefly discussed. The comparison tests furthermore revealed that careful design of the wheel pads and blockage corrections for lift seem to be very influential in achieving reasonable lift correlations. Six-component measurements show similar problems.
X