Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimization of Laminated Stack Solutions for Electric Motors in Electrified Vehicles

2024-04-09
2024-01-2214
The electrification of vehicles marks the introduction of new products to the automotive market and a continued effort to optimize their performance. The electric motor is an important component with which a further optimization of efficiency, power density and cost can be achieved. Additional benefits can be realized in the laminated core. This paper presents an innovative method to produce laminated stacks by a chain of processes different from conventional ways. The process chain presents a sequence of precision blanking, buffering, heat treatment and gluing. The effect of these processes is compared with existing solutions that typically contain some individual features but usually not the combination that enhances the overall effect. The heat treatment decreases residual stresses from previous process steps and reduces power losses in the laminated core. Depending on the design, benefits around 20% are found.
Technical Paper

A Rapid Catalyst Heating System for Gasoline-Fueled Engines

2024-04-09
2024-01-2378
Increasingly stringent tailpipe emissions regulations have prompted renewed interest in catalyst heating technology – where an integrated device supplies supplemental heat to accelerate catalyst ‘light-off’. Bosch and Boysen, following a collaborative multi-year effort, have developed a Rapid Catalyst Heating System (RCH) for gasoline-fueled applications. The RCH system provides upwards of 25 kW of thermal power, greatly enhancing catalyst performance and robustness. Additional benefits include reduction of precious metal loading (versus a ‘PGM-only’ approach) and avoidance of near-engine catalyst placement (limiting the need for enrichment strategies). The following paper provides a technical overview of the Bosch/Boysen (BOB) Rapid Catalyst Heating system – including a detailed review of the system’s architecture, key performance characteristics, and the associated impact on vehicle-level emissions.
Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Technical Paper

Optimal Automated Calibration of Model-Based ECU-Functions in Air System of Diesel Engines

2018-05-05
2018-01-5003
The success of model-based ECU-functions relies on precise and efficient modeling of the behavior of combustion engines. Due to the limited computing power, usually a combination of physical models and calibration parameters is preferred for engine modeling in ECU. The parameters can be scalars, 1 or 2-dimensional empirical models, such as look-up table for volumetric efficiency and effective area of the exhaust gas recirculation (EGR). A novel algorithm is proposed to automatically calibrate the look-up tables characterizing stationary functional relationships in ECU-function of the air system of a diesel engine with minimum calibration cost. The algorithm runs in the framework of online design of experiment (DoE), in which Gaussian process model (GPM) is adopted to approximate the relationships of interest.
Technical Paper

2D Residual Gas Visualization in an Optical Direct Injection Spark Ignition Engine with IR Laser Absorption

2015-04-14
2015-01-1648
The spatial distribution of internal exhaust gas recirculation (EGR) is evaluated in an optically accessible direct injection spark ignition engine using near infrared laser absorption to visualize the distribution of the H2O molecule. The obtained overall internal exhaust gas recirculation compares well to gas-exchange cycle calculations and the spatial distributions are consistent with those measured with inverse LIF. The experimental procedures described in this report are designed to be simple and rapidly implemented without the need to resort to unusual optical components. The necessary spectral data of the selected absorption line is obtained from the HITEMP database and is validated with prior experiments carried out in a reference cell. Laser speckle in the images is effectively reduced using a ballistic diffuser.
Journal Article

Investigation on the Effect of Very High Fuel Injection Pressure on Soot-NOx Emissions at High Load in a Passenger Car Diesel Engine

2009-06-15
2009-01-1930
Previous research has shown that elevating fuel injection pressure results in better air-fuel mixture formation, allowing for a further increase in maximum exhaust gas recirculation (EGR) rate while consequently reducing NOx emissions. The aim of this paper is to find out whether there is an optimum injection pressure for lowest soot-NOx emissions at a given boost pressure in high-speed diesel engines. Experiments are carried out on a single-cylinder research engine with a prototype common-rail system, capable of more than 200 MPa injection pressure. The effect of injection pressure on soot-NOx formation is investigated for a variety of boost conditions, representing the conditions of single to multi-stage turbocharger systems. Analysis of the data is performed at the application relevant soot to NOx ratio of approximately 1:10. It is observed that above a critical injection pressure, soot-NOx emissions are not reduced any further.
Journal Article

Data Based Cylinder Pressure Modeling for Direct-injection Diesel Engines

2009-04-20
2009-01-0679
In this article a new zero-dimensional model is presented for simulating the cylinder pressure in direct injection diesel engines. The model enables the representation of current combustion processes considering multiple injections, high exhaust gas recirculation rates, and turbocharging. In these methods solely cycle-resolved, scalar input variables from the electronic control unit in combination with empirical parameters are required for modeling. The latter are adapted automatically to different engines or modified applications using measured cylinder pressure traces. The verification based on measurements within the entire operating range from engines of different size and type proves the universal applicability and high accuracy of the proposed method.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
Technical Paper

Engine-Independent Exhaust Gas Aftertreatment Using a Burner Heated Catalyst

2006-10-16
2006-01-3401
Meeting current exhaust emission standards requires rapid catalyst light-off. Closed-coupled catalysts are commonly used to reduce light-off time by minimizing exhaust heat loss between the engine and catalyst. However, this exhaust gas system design leads to a coupling of catalyst heating and engine operation. An engine-independent exhaust gas aftertreatment can be realized by combining a burner heated catalyst system (BHC) with an underfloor catalyst located far away from the engine. This paper describes some basic characteristics of such a BHC system and the results of fitting this system into a Volkswagen Touareg where a single catalyst was located about 1.8 m downstream of the engine. Nevertheless, it was possible to reach about 50% of the current European emission standard EU 4 without additional fuel consumption caused by the BHC system.
Technical Paper

Thermodynamic Analysis and Benchmark of Various Gasoline Combustion Concepts

2006-04-03
2006-01-0231
Novel Combustion technologies and strategies show high potential in reducing the fuel consumption of gasoline spark ignition (SI) engines. In this paper, a comparison between various gasoline combustion concepts at two representative engine operating points is shown. Advantages of the combustion concepts are analyzed using thermodynamic split of losses method. In this paper, a tool for thermodynamic assessment (Split of Losses) of conventional and new operating strategies of SI engine and its derivatives is used. Technologies, like variable valve actuation and/or gasoline direct injection, allow new strategies to run the SI engine unthrottled with early inlet valve closing (SI-VVA) combined with high EGR, charge stratification (SI-STRAT) and controlled auto ignition (CAI), also known as gasoline homogeneous charge compression ignition (HCCI). These diverse combustion concepts show thermodynamic gains that stem from several, often different sources.
Technical Paper

Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction

2006-04-03
2006-01-0643
The selective catalytic reduction (SCR) based on urea-water-solution is an effective technique to reduce nitrogen oxides (NOx) emitted from diesel engines. A 3D numerical computer model of the injection of urea-water-solution and their interaction with the exhaust gas flow and exhaust tubing is developed to evaluate different configurations during the development process of such a DeNOx-system. The model accounts for all relevant processes appearing from the injection point to the entrance of the SCR-catalyst: momentum interaction between gas phase and droplets evaporation and thermolysis of droplets hydrolysis of isocyanic acid in gas phase heat transfer between wall and droplets spray/wall-interaction two-component wall film including interaction with gas phase and exhaust tube The single modeling steps are verified with visualizations, patternator measurements, phase-doppler-anemometer results and temperature measurements.
Technical Paper

Development of an Engine Management Strategy and a Cost Effective Catalyst System to Meet SULEV Emission Requirements Demonstrated on a V-6 Engine

2004-03-08
2004-01-1490
The study presented in this paper focuses on measures to minimize exhaust gas emissions to meet SULEV targets on a V6 engine by using a cost efficient system configuration. The study consists of three parts. A) In the first stage, the influence of engine management both on raw emissions and catalyst light off performance was optimized. B) Afterwards, the predefined high cell density catalyst system was tested on an engine test bench. In this stage, thermal data and engine out emissions were used for modeling and prediction of light-off performance for further optimized catalyst concepts. C) In the final stage of the program, the emission performance of the test matrix, including high cell density as well as multifunctional single substrate systems, are studied during the FTP cycle. The presented results show the approach to achieve SULEV emission compliance with innovative engine control strategies in combination with a cost effective metallic catalyst design.
Technical Paper

The Development and Performance of the Compact SCR-Trap System: A 4-Way Diesel Emission Control System

2003-03-03
2003-01-0778
The tightening of Heavy Duty Diesel (HDD) emissions legislation throughout the world is leading to the development of emission control devices to enable HDD engines to meet the new standards. NOx and Particulate Matter (PM) are the key pollutants which these emission control systems need to address. Diesel Particulate Filters (DPFs) are already in use in significant numbers to control PM emissions from HDD vehicles, and Selective Catalytic Reduction (SCR) is a very promising technology to control NOx emissions. This paper describes the development and performance of the Compact SCR-Trap system - a pollution control device comprising a DPF-based system (the Continuously Regenerating Trap system) upstream of an SCR system. The system has been designed to be as easy to package as possible, by minimising the total volume of the system and by incorporating the SCR catalysts on annular substrates placed around the outside of the DPF-based system.
Technical Paper

PVD-Wear Resistant Coatings of Homogeneous and Graded Ti(C,N): Residual Stresses and Mechanical Performance under Hertzian Load

2002-03-19
2002-01-1407
Ceramic protective coatings on cutting tools for steel machining are state of the art in industrial applications. Several concepts to improve the efficiency of machining processes as for instance high-speed or dry cutting yield increasing demands regarding the wear and corrosion resistance of the protective tool coatings. The generic process characteristics of PVD-coating techniques offer opportunities to tailor the coatings in terms of microstructure and residual stress states by adjusting appropriate process parameters. Besides chemical composition and microstructure the residual stresses in the coatings strongly influence their in-service performance and, are therefore important to assess and to correlate with process parameters.
Technical Paper

The New Common Rail Fuel System for the Duramax 6600 V8 Diesel Engine

2001-11-12
2001-01-2704
The Bosch Common Rail Fuel Injection System with the new technologies developed for the Duramax 6600 engine offer numerous performance advantages including exhaust emissions control and noise. The layout of the fuel system components and electrical parts is specifically designed to control fuel injection characteristics. The new injector and nozzle technology was integrated to achieve the required system performance. The new 1600bar fuel pump is also a prerequisite for required system performance.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
Technical Paper

Advanced Planar Oxygen Sensors for Future Emission Control Strategies

1997-02-24
970459
This paper presents advanced planar ZrO2 oxygen sensors being developed at Robert Bosch using a modified tetragonal partially stabilized zirconia (TZP) with high ionic conductivity, high phase stability and high thermo-mechanical strength. Green tape technology combined with highly automated thickfilm techniques allows robust and cost effective manufacturing of those novel sensing elements. Standardization of assembling parts reduces the complexity of the assembly line even in the case of different sensing principles. The sensor family meets the new requirements of modern ULEV strategies like fast light off below 10 s and linear control capability as well as high quality assurance standards. High volume production will start in 1997 for European customers.
Technical Paper

Integrated Barometric Pressure Sensor with SMD Packaging: Example of Standardized Sensor Packaging

1996-02-01
960756
A single-chip integrated barometric pressure sensor using bulk silicon micromachining will be presented in this paper. The sensor chip incorporates the complete signal evaluation and trimming of the temperature coefficients and manufacturing tolerances. Sensor chips are mounted onto 6″ × 4″ thick film substrates for batch processing during assembly and trimming. The separated, individual devices can be used for surface mounting (SMD) on a printed circuit board (PCB). Specifications for the sensor functions, as well as the assembly and packaging concept, will be discussed. Assembly, trimming and packaging are the most expensive production steps in the manufacture of sensors. In order to reduce the costs for sensors, we are introducing a standardization of sensor assembly and trimming with batch processing capability: after dicing, the integrated sensor chip is attached to a 6″ × 4″ thick film ceramic substrate with standard die-attaching glue.
Technical Paper

Acceleration Sensor in Surface Micromachining for Airbag Applications with High Signal/Noise Ratio

1996-02-01
960758
Employing novel surface micromachining techniques, a highly miniaturized, robust device has been fabricated. The accelerometer fulfills all requirements of state-of-the-art airbag systems. The present paper reports on the manufacturing and assembly process as well as the performance of the sensor. The capacitive sensing element consists of a moveable proof mass of polysilicon on a single crystalline silicon substrate. A lateral acceleration displaces the proof mass and a capacitive signal is generated at a comb electrode configuration. An external IC circuit provides the signal evaluation and conditioning in a closed loop mode, resulting in low temperature dependency of sensor characteristics and a wide frequency response. The sensor is fabricated by standard IC processing steps combined with additional surface micromachining techniques. A special deposition process in an epitaxial reactor allows the fabrication of moveable masses of more than 10 µm thickness.
Technical Paper

Integrated Silicon Pressure Sensor for Automotive Application with Electronic Trimming

1995-02-01
950533
An integrated manifold pressure sensor using bulk silicon micromachining techniques is presented. The sensor incorporates the entire signal amplification, temperature compensation, and circuitry for electronic trimming of the sensor chip. The chip circuitry and the manufacturing and assembly process will be discussed. Trimming of the sensitivity and offset production tolerances as well as the temperature coefficients of sensitivity and offset is performed using an electrical trim method. A binary coded digital compensation information is serially fed into an on-chip control unit. The individual bits are decoded and sent to the gates of a bank of trimming thyristors. Once the correct binary code has been selected so that the sensor characteristic is centered in the specified range, the programming voltage is increased and the data is irreversibely stored similarly to the zener zapping method.
X