Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Technical Paper

Investigation of Small-Scale Unintended Releases of Hydrogen

2007-04-16
2007-01-0432
Knowledge of the concentration field and flammability envelope from a small-scale hydrogen leak is an issue of importance for the safe use of hydrogen. A combined experimental and modeling program is being carried out by Sandia National Laboratories to characterize and predict the behavior of small-scale hydrogen releases. In contrast to the previous work performed by Sandia on large, momentum-dominated hydrogen leaks, these studies are focusing on small leaks in the Froude number range where both buoyant and inertial forces are important or, in the limit, where buoyancy dominates leak behavior. In the slow leak regime buoyant forces affect the trajectory and rate of air entrainment of the hydrogen jet leak and significant curvature can occur in the jet trajectory. Slow leaks may occur from leaky fittings or o-ring seals on hydrogen vehicles or other hydrogen-based systems where large amounts of pressure drop occur across the leak path.
Technical Paper

Evaluation of Aerogel Materials for High-Temperature Batteries

1999-08-02
1999-01-2479
Silica aerogels have 1/3 the thermal conductivity of the best commercial composite insulations, or ~13 mW/m-K at 25 °C. However, aerogels are transparent in the near IR region of 4-7 μm, which is where the radiation peak from a thermal-battery stack occurs. Titania and carbon-black powders were examined as thermal opacifiers, to reduce radiation at temperatures between 300°C and 600°C, which spans the range of operating temperature for most thermal batteries. The effectiveness of the various opacifiers depended on the loading, with the best overall results being obtained using aerogels filled with carbon black. Fabrication and strength issues still remain, however.
Technical Paper

Improving Aircraft Composite Inspections Using Optimized Reference Standards

1998-11-09
983120
The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft.
Technical Paper

Impulsive Loadings of Composite Shells

1989-09-01
892369
Two tests of composite shells loaded under half-cosine impulsive loadings are discussed. One cylinder which included no other materials was modeled successfully such that calculated results matched test results out to late times. The other cylinder, which included an inner annulus of an elastomeric material, was less successfully modeled, even though the composite material was modeled similarly in both instances. A viscoelastic model and an elastic model were both used to model the elastomeric material, and the viscoelastic model produced significantly better results.
X