Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Some Insights on the Stochastic Nature of Knock and the Evolution of Hot Spots in the End-Gas During the Engine Cycle from Experimental Measurements of Knock Onset and Knock Intensity

2017-10-08
2017-01-2233
Knock in spark ignition engines is stochastic in nature. It is caused by autoignition in hot spots in the unburned end-gas ahead of the expanding flame front. Knock onset in an engine cycle can be predicted using the Livengood-Wu integral if the variation of ignition delay with pressure and temperature as well as the pressure and temperature variation with crank angle are known. However, knock intensity (KI) is determined by the evolution of the pressure wave following knock onset. In an earlier paper (SAE 2017-01-0689) we showed that KI can be approximated by KI = Z (∂T/∂x)-2 at a fixed operating condition, where Z is a function of Pko, the pressure, and (∂T/∂x) is the temperature gradient in the hot spot at knock onset. Then, from experimental measurements of KI and Pko, using five different fuels, with the engine operating at boosted conditions, a probability density function for (∂T/∂x) was established.
Journal Article

On Knock Intensity and Superknock in SI Engines

2017-03-28
2017-01-0689
Most studies on knock ignore the stochastic nature of knock and focus on the onset of knock which is determined by chemical kinetics. This paper focuses on knock intensity (KI) which is determined by the evolution of the pressure wave following knock onset in a hot spot and highlights the stochastic processes involved. KI is defined in this study as the maximum peak-to-peak pressure fluctuation that follows the onset of knock. It depends on ξ = (a/ua) where ua is the speed of the autoignition front and a is the speed of sound. When ua is small, KI can be related to the product of a parameter Z, which depends on Pko, the pressure at knock onset and the square of (∂x/∂T), which is the inverse of the gradient of temperature with distance in the hot spot. Both Z and (∂x/∂T) were calculated using measured KI and Pko for hundreds of individual knocking cycles for different fuels.
Technical Paper

Knock Prediction Using a Simple Model for Ignition Delay

2016-04-05
2016-01-0702
An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately.
X