Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Investigation of Flash Boiling Spray and Combustion in SIDI Engine under Low-Speed Homogeneous Lean Operation

2021-04-06
2021-01-0467
Homogeneous lean combustion is expected to be a key technology to further improve the combustion and reduce emissions of spark-ignition direct-injection engines. The application of lean combustion is facing many challenges such as slow flame propagation and combustion fluctuations. Under severe operating conditions such as low-speed lean-burn conditions, the weak in-cylinder airflow worsens the fuel and air mixing yielding difficulties in stable flame kernel initiation and consequently deteriorating flame propagation. In this study, the effect of flash boiling spray on flame kernel generation, flame propagation, engine performance, and exhaust emissions of the spark ignition direct injection (SIDI) engine under homogenous lean-burn conditions are investigated. A single-cylinder four-stroke optical SIDI engine was used in this study. The in-cylinder flash boiling and subcooled sprays during engine operation were compared using the Mie scattering technique.
Technical Paper

Study of Flash Boiling Spray Combustion in a Spark Ignition Direct Injection Optical Engine Using Digital Image Processing Diagnostics

2019-04-02
2019-01-0252
Flash boiling spray has been proven to be a useful method in providing finer fuel droplet and stronger evaporation in favor of creating a homogeneous fuel-air mixture. Combustion characteristics of flash boiling spray are thus valuable to be investigated systematically for aiding the development of efficient internal combustion system. An experimental study of flash boiling spray combustion in a SIDI optical engine under early injection has been conducted. The fuel, Iso-octane, was used across all tests. Three fuel spray conditions experimented in the study: normal liquid, transitional flash boiling and flare flash boiling sprays, within each case that Pa/Ps ratio was set in (>1), (0.3~1), and (<0.3) respectively. A small quartz insert on the piston enables optical access for observing combustion process; non-intrusive measurements on flame radicals has been carried out using a high-speed color camera.
X