Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Stress Generation in Large Pouch Cells Under Cycling and Abuse Conditions

2024-04-09
2024-01-2196
Pouch cells are increasingly popular form factors for the construction of energy storage systems in electric vehicles of all classes. Knowledge of the stress generated by these higher capacity pouch cells is critical to properly design battery modules and packs for both normal and abnormal operation. Existing literature predominantly offers data on smaller pouch cells with capacities of less than 10 Ah, leaving a gap in our understanding of the behavior of these larger cells. This experimental study aimed to bridge this knowledge gap by measuring loads and stresses in constrained 65 Ah pouch cells under both cycling and abuse conditions. To capture the desired responses, a load cell was located within a robust fixture to measure cell stress in real time after the application of a preload of approximately 30 kilograms or 294 N, equivalent to a pressure of 0.063 bar, with a fixed displacement.
Technical Paper

Diesel Oxidation Catalyst Performance with Biodiesel Formulations

2024-04-09
2024-01-2711
Biodiesel (i.e., mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats) is a renewable diesel fuel providing life-cycle greenhouse gas emission reductions relative to petroleum-derived diesel. With the expectation that there would be widespread use of biodiesel as a substitute for ultra-low sulfur diesel (ULSD), there have been many studies looking into the effects of biodiesel on engine and aftertreatment, particularly its compatibility to the current aftertreatment technologies. The objective of this study was to generate experimental data to measure the effectiveness of a current technology diesel oxidation catalysts (DOC) to oxidize soy-based biodiesel at various blend levels with ULSD. Biodiesel blends from 0 to 100% were evaluated on an engine using a conventional DOC.
Technical Paper

Post-Mortem Analysis of DAAAC and Conventionally Aged Aftertreatment Systems

2023-10-31
2023-01-1656
Upcoming regulations from CARB and EPA will require diesel engine manufacturers to validate aftertreatment durability with full useful life aged components. To this end, the Diesel Aftertreatment Accelerated Aging Cycle (DAAAC) protocol was developed to accelerate aftertreatment aging by accounting for hydrothermal aging, sulfur, and oil poisoning deterioration mechanisms. Two aftertreatment systems aged with the DAAAC protocol, one on an engine and the other on a burner system, were directly compared to a reference system that was aged to full useful life using conventional service accumulation. After on-engine emission testing of the fully aged components, DOC and SCR catalyst samples were extracted from the aftertreatment systems to compare the elemental distribution of contaminants between systems. In addition, benchtop reactor testing was conducted to measure differences in catalyst performance.
Technical Paper

Comparison on Combustion and Emissions Performance of Biodiesel and Diesel in a Heavy-duty Diesel Engine: NOX, Particulate Matter, and Particle Size Distribution

2023-09-29
2023-32-0100
Low carbon emissions policies for the transportation sector have recently driven more interest in using low net-carbon fuels, including biodiesel. An internal combustion engine (ICE) can operate effectively using biodiesel while achieving lower engine-out emissions, such as soot, mostly thanks to oxygenate content in biodiesel. This study selected a heavy-duty (HD) single-cylinder engine (SCE) platform to test biodiesel fuel blends with 20% and 100% biodiesel content by volume, referred to as B20, and B100. Test conditions include a parametric study of exhaust gas recirculating (EGR), and the start of injection (SOI) performed at low and high engine load operating points. In-cylinder pressure and engine-out emissions (NOX and soot) measurements were collected to compare diesel and biodiesel fuels.
Technical Paper

Numerical Study of Dual Fuel Methanol/Diesel Combustion under Engine-like Condition

2023-09-29
2023-32-0121
Alternative fuels such as methanol can significantly reduce greenhouse gas (GHG) emissions when used in internal combustion engines (ICEs). This study characterized the combustion of methanol, methanol/diesel, and methanol/renewable diesel numerically. Numerical findings were also compared with engine experiments using a single-cylinder engine (SCE). The engine was operated under a dual-fuel combustion mode: methanol was fumigated at the intake port, and diesel was injected inside the cylinder. The characteristic of ignition delay trend as methanol concentration increased is being described at low temperature (low engine load) and high temperature (high engine load) conditions.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part I: Accelerated Ash Loading and DPF Performance Evaluation

2023-04-11
2023-01-0297
The project objective was to generate experimental data to evaluate the impact of metals doped B20 on DPF ash loading and performance compared to that of conventional petrodiesel. Accelerated ash loading was conducted on two DPFs – one exposed to regular diesel fuel and the other to B20 containing metal dopants equivalent to 4 ppm B100 total metals (currently total metals are limited to 10 ppm in ASTM D6751, the standard for B100). Periodic performance evaluations were conducted on the DPFs at 10 g/L ash loading intervals. After the evaluations at 30 g/L, the DPF was cleaned with a commercial DPF cleaning machine and another round of DPF evaluations were conducted. A comparison of the effect of ash loading with the two fuels and DPF cleaning is presented. The metals doped B20 fuel resulted in ash that was similar to that deposited when exposed to ULSD (lube oil ash) and exhibited similar ash cleaning removal efficiency.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Engine and Emissions Performance of Renewable Diesel in a Heavy-Duty Diesel Engine: A Single-cylinder Engine Experiment

2023-04-11
2023-01-0273
As an alternative fuel, renewable diesel (RD) could improve the performance of conventional internal combustion engines (ICE) because of its difference in fuel properties. With almost no aromatic content in the fuel, RD produces less soot emissions than diesel. The higher cetane number (CN) of RD also promotes ignition of the fuel, which is critical, especially under low load, and low reactivity conditions. This study tested RD fuel in a heavy-duty single-cylinder engine (SCE) under compression-ignition (CI) operation. Test condition includes low and high load points with change in exhaust gas recirculation (EGR) and start of injection (SOI). Measurements and analysis are provided to study combustion and emissions, including particulate matters (PM) mass and particle number (PN). It was found that while the combustion of RD and diesel are very similar, PM and PN emissions of RD were reduced substantially compared to diesel.
Journal Article

Low Ambient Temperature Impact on a Low NOX Demonstration System

2023-04-11
2023-01-0361
In 2020, CARB adopted the low NOX omnibus ruling, which provided revisions to on-road heavy duty engine compliance standards and certification practices. As part of the updates to the regulation, CARB has introduced a new in-use vehicle testing process that broadens the operation modes tested and considers the manufacturer’s intended vehicle application. Compared to the previous method, or the Not-to-Exceed approach, cold start and low ambient temperature provisions were included as part of the updates. The inclusion of low temperature operation requires the OEMs to design a robust engine and aftertreatment package that extends NOX conversion performance. The following work discusses the NOX emissions performance impact in a low temperature ambient environment. The engine and aftertreatment system evaluated was designed to comply with CARB’s low NOX regulations. The cycles tested included the CARB Southern NTE cycle and an FTP-LLC protocol.
Technical Paper

DAAAC Protocol for Durability Demonstration of Diesel Aftertreatment Systems: Emissions Performance Validation

2022-08-30
2022-01-1015
Aftertreatment durability demonstration is a required validation exercise for on-road medium and heavy-duty diesel engine certification. The demonstration is meant to validate emissions compliance for the engine and aftertreatment system at full useful life or FUL. Current certification practices allow engine manufacturers to complete partial aging and then extrapolate emissions performance results to FUL. While this process reduces the amount of service accumulation time, it does not consider changes in the aftertreatment deterioration rate. Rather, deterioration is assumed to occur at a linear rate, which may lead to false conclusions relating to emissions compliance. With CARB and EPA’s commitment to the reduction of criteria emissions, emphasis has also been placed on revising the existing certification practices. The updated practices would require engine manufacturers to certify with an aftertreatment system aged to FUL.
Journal Article

Development of Steady State NO2:NOX Control via an Independent Nitric Decomposition System for the Exhaust Composition Transient Operation Laboratory

2022-03-29
2022-01-0548
Southwest Research Institute (SwRI) utilizes the burner-based Exhaust Composition Transient Operation LaboratoryTM (ECTO-Lab) to accurately simulate transient engines and replicate real exhaust that is produced by light and heavy-duty engines for aftertreatment aging and evaluations. This system can generate and dose NOX over transient cycles from a range of 20 ppm to 1200 ppm where the NOX is generated by the in-situ decomposition and combustion of a fuel-bound, nitrogen containing compound. During the combustion and decomposition of the nitrogen containing compound over 95 % of the NOX generated is in the form of NO. To authentically simulate exhaust gases, it is necessary to account for the distribution of the NO to the NO2. Since previous work has established that the decomposition of nitric acid can be utilized as a method to generate NO2, the objective of this project was to develop control of NO and NO2 within SwRI’s ECTO-Lab through the decomposition of nitric acid.
Journal Article

CARB Low NOX Stage 3 Program - Final Results and Summary

2021-04-06
2021-01-0589
Despite considerable progress over the last several decades, California continues to face some of the most significant air quality problems in the United States. These continued issues highlight the need for further mobile source NOX reductions to help California and other areas meet ambient air quality targets mandated by the U.S. EPA. Beginning in 2014, the California Air Resources Board (CARB) launched a program aimed at demonstrating technologies that could enable heavy-duty on-highway engines to reach tailpipe NOX levels up to 90% below the current standards, which were implemented in 2010. At the same time, mandated improvements to greenhouse gas emissions (GHG) require that these NOX reductions be achieved without sacrificing fuel consumption and increasing GHG emissions.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Technical Paper

Fast Diesel Aftertreatment Heat-up Using CDA and an Electrical Heater

2021-04-06
2021-01-0211
Commercial vehicles require fast aftertreatment heat-up in order to move the SCR catalyst into the most efficient temperature range to meet upcoming NOX regulations. Today’s diesel aftertreatment systems require on the order of 10 minutes to heat up during a cold FTP cycle. The focus of this paper is to heat up the aftertreatment system as quickly as possible during cold starts and maintain a high temperature during low load, while minimizing fuel consumption. A system solution is demonstrated using a heavy-duty diesel engine with an end-of-life aged aftertreatment system targeted for 2027 emission levels using various levels of controls. The baseline layer of controls includes cylinder deactivation to raise the exhaust temperature more than 100° C in combination with elevated idle speed to increase the mass flowrate through the aftertreatment system. The combination yields higher exhaust enthalpy through the aftertreatment system.
Journal Article

Ignition Delay Model Parameterization Using Single-Cylinder Engines Data

2020-09-15
2020-01-2005
The confluence of increasing fuel economy requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits of higher octane numbers and high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were prepared with varying composition, octane numbers and ethanol blend levels. The paper reports on the third part of this study where cylinder pressures were recorded for fuels under knocking conditions in both a single-cylinder research engine (SCE), utilizing a GM LHU head and piston, as well as the CFR engines used for octane ratings.
Journal Article

Bridging the Knock Severity Gap to CFR Octane Rating Engines

2020-09-15
2020-01-2050
It is widely acknowledged that the CFR octane rating engines are not representative of modern engines and that there is a gap in the quantification of knock severity between the two engine types. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engines and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were tested with varying composition, octane numbers and ethanol blend levels. The paper reports on the fourth part of this study where cylinder pressures were recorded under standard knock conditions in CFR engines under RON and MON conditions using the ASTM prescribed instrumentation. By the appropriate signal conditioning of the D1 detonation pickups on the CFR engines, a quantification of the knock severity was possible that had the same frequency response as a cylinder pressure transducer.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Technical Paper

Effects of Injection Pressure, Intake Throttling, and Cylinder Deactivation on Fuel Consumption and Emissions for a Light Duty Diesel Engine at Idle Conditions

2020-04-14
2020-01-0303
The continuing growth of urban population centers has led to increased traffic congestion for which vehicles can spend considerable periods at low speed/low load and idle conditions. For light-duty diesel vehicles, these low load conditions are characterized by low engine exhaust temperatures (~100oC). Exhaust temperatures can be too low to maintain the activity of the catalytic exhaust aftertreatment devices (usually need >~200oC) which can lead to high emissions that contribute to deteriorating urban air quality. This study is a follow-on to two previous studies on the effects of throttling, post-injection, and cylinder deactivation (CDA) on light-duty diesel engine exhaust temperatures and emissions. The focus of the present study is on fuel consumption, exhaust temperatures, and emissions with and without cylinder deactivation or with fuel cutout, and the sensitivity to or effects of fuel rail pressure, along with observations of apparent idle engine friction.
Technical Paper

Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles

2020-04-14
2020-01-0800
Selective Catalytic Reduction (SCR) systems provide excellent NOX control for diesel engines provided the exhaust aftertreatment inlet temperature remains at 200° C or higher. Since diesel engines run lean, extended light load operation typically causes exhaust temperatures to fall below 200° C and SCR conversion efficiency diminishes. Heated urea dosing systems are being developed to allow dosing below 190° C. However, catalyst face plugging remains a concern. Close coupled SCR systems and lower temperature formulation of SCR systems are also being developed, which add additional expense. Current strategies of post fuel injection and retarded injection timing increases fuel consumption. One viable keep-warm strategy examined in this paper is cylinder deactivation (CDA) which can increase exhaust temperature and reduce fuel consumption.
Technical Paper

In-Situ Measurement of Component Efficiency in Connected and Automated Hybrid-Electric Vehicles

2020-04-14
2020-01-1284
Connected and automated driving technology is known to improve real-world vehicle efficiency by considering information about the vehicle’s environment such as traffic conditions, traffic lights or road grade. This study shows how the powertrain of a hybrid-electric vehicle realizes those efficiency benefits by developing methods to directly measure real-time transient power losses of the vehicle’s powertrain components through chassis-dynamometer testing. This study is a follow-on to SAE Technical Paper 2019-01-0116, Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles [1], to understand the sources of efficiency gains resulting from connected and automated vehicle driving. A 2017 Toyota Prius Prime was instrumented to collect power measurements throughout its powertrain and driven over a specific driving schedule on a chassis dynamometer.
X