Refine Your Search

Topic

Author

Search Results

Technical Paper

Cost Effective Techniques for SCEV to Improve Performance & Life of Battery and Motor by Using Efficient Thermal Systems

2024-01-16
2024-26-0275
The automotive world is moving towards electric powertrain systems. The electric powertrain systems have emerged as a promising alternative to the conventional powertrain system. The performance of electric vehicle is highly dependent on operating temperature of electric and electronic components of the vehicle. All power electronics and electric components in EV generate heat during operation and it must be removed to prevent overheating of components. Higher temperatures raise safety concerns whereas lower temperatures deteriorate the performance of power electronics & electric components. These power electronics & electrical components perform efficiently and safely if operated within certain temperature range. This paper presents an advanced efficient cost-effective thermal technique for small commercial electric vehicle (SCEV) to improve the performance & life of major electric components.
Technical Paper

Influence of Clean Side Duct Topology on Mass Air Flow for Gasoline Engine on Passenger Vehicle

2024-01-16
2024-26-0339
The need for effective control systems is exacerbated by tighter pollution regulations and consumer demands for highly efficiently vehicles especially in the passenger segment. The air flow estimation of engine and accordingly controlling the fuel removes the lacuna of modern gasoline engines. The hot wire type mass air flow sensor is commonly used for air flow measurement, and it generally mounted in clean side piping to prevent damage to air mass flow sensor. The right estimation of air flow is possible by getting uniform flow over the different engine operating speed and load conditions. The placement of air flow sensor becomes critical considering the engine layout and packaging constraints and meeting the sensor mounting requirements. The deviation in mounting of air flow sensor will lead to consequently impact of engine performance and emissions.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
Technical Paper

A New Gen ‘Super-Efficient Condenser’ for Mobile Air Conditioning Application

2023-09-14
2023-28-0043
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin.
Technical Paper

Improvement of AC System for Bus with Tropical/Hot Ambient Application

2023-09-14
2023-28-0016
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level.
Technical Paper

Use of Powder Metallurgy Based Connecting Rod for Diesel Engine Application

2023-05-25
2023-28-1352
The usage of forging a preformed, near net shape, compacted and sintered metal powder has been widely accepted since the eighties and is now one of the mainstays for producing Connecting rods in North America. However, its use in Indian subcontinent is limited as its counterpart i.e. conventional steel forging is still the most dominant. Powder metallurgy route has many advantages like good dimensional accuracy; minimum scattering of weight etc. Despite these advantages, the Powder metallurgy process is still not preferred predominantly due to technical (endurance) and infrastructural limitations. This work envisages combining the benefits of powder metallurgy process with the required mechanical properties viz. tensile and fatigue strength alongside design modifications to meet the requirements of a connecting rod for a 2-cylinder diesel engine. The connecting rods met the fatigue life at the required FOS equaling the performance of a conventionally forged connecting rod.
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
Technical Paper

Effect of Welding Consumables on Static and Dynamic Properties of Representative Welded Joints for Chassis Structure

2021-09-22
2021-26-0259
Automotive suspension system forms the basis for the design of vehicle with durability, reliability, dynamics and NVH requirements. The automotive suspension systems are exposed to dynamic and static loads which in turn demands the highest integrity and performance against fatigue based metallic degradation. The current focus in automotive industry is to reduce the weight of the automotive parts and components without compromising with its static and dynamic mechanical properties. This weight reduction imparts fuel efficiency with added advantages. High-Strength Low Alloy steel (HSLA) offers optimum combination of ductility, monotonic and cyclic mechanical properties. Furthermore, welding processes offer design flexibility to achieve robust and lightweight designs with high strength steels.
Technical Paper

Innovative Approach to Address BS VI Challenges of NVH Refinement and Total Cost of Ownership of Small Commercial Vehicles with Naturally Aspirated Two Cylinder Diesel Engines

2021-09-22
2021-26-0284
Small commercial vehicles (SCVs) are the drivers of a major part of India’s indirect economy, providing the most efficient means of transport. With the introduction of BS-VI norms, some major overhauls have been done to the SCV models to meet BS VI norms in challenging timeline for early market entry. This forced to automotive designers towards challenge of cost competitiveness as well as refinement level to survive in this competitive market. This paper explains the systematic approach used to overcome challenges of higher tactile vibrations, higher in-cab noise because of BS VI requirement in 2 cycle engine required for small commercial vehicle. The solutions were need to be worked out without compromising the other performance attributes like total cost of ownership, fuel economy, ease of servicing and cost effectiveness.
Technical Paper

Modelling of Internal Manifold Flow Distribution in PEMFC

2021-09-22
2021-26-0340
In a Polymer Electrolyte Membrane Fuel Cell (PEMFC) uniform reaction rate is very crucial to obtain maximum performance and to maintain the life of the cells. In PEMFC stack manifold plays an important role in maintaining uniform flow distribution of reactants (hydrogen, air and coolant) to the cells. Many studies have been carried out for examining the effect of manifold on flow distribution and pressure drop. Most studies are limited to small scale level (5 to 10 kW stack). This paper describes large scale fuel cell stack manifold design, flow distribution and pressured contours which is suitable for automotive vehicles (30 to 50 kW). The design consists of simplified scaled up fuel cell stack with cells connected in the series. Modelled the effect of internal manifold geometry of the fuel cell stack on pressure and flow distribution to the cells.
Technical Paper

Aero Drag Improvement Study on Large Commercial Vehicles Using CFD Lead Approach

2021-09-22
2021-26-0424
Nowadays, E- commerce and logistics business model is booming in India with road transport as a major mode of delivery system using containers. As competition in such business are on rise, different ways of improving profit margins are being continuously evolved. One such scenario is to look at reducing transportation cost while reducing fuel consumption. Traditionally, aero dynamics of commercial vehicles have never been in focus during their product development although literature shows major part of total fuel energy is consumed in overcoming aerodynamic drag at and above 60 kmph in case of large commercial vehicle. Hence improving vehicle exterior aerodynamic performance gives opportunity to reduce fuel consumption and thereby business profitability. Also byproduct of this improvement is reduced emissions and meeting regulatory requirements.
Technical Paper

Effects of Environmental Factors on Flexural Properties of Long Fiber Reinforced Polymer Composite

2021-09-22
2021-26-0257
Environmental regulation, operating cost reduction and meeting stringent safety norms are the predominant challenges for the automotive sector today. Automotive OEMs are facing equally aggressive challenges to meet high fuel efficiency, superior performance, low cost and weight with enhanced durability and reliability. One of the key technologies which enable light weighting and cost optimization is the use of fiber reinforced polymer (FRP) composite in automotive chassis systems. FRP composites have high specific strength, corrosion and fatigue resistance with additional advantage of complex near net shape manufacturing and tailor made properties. These advantages makes FRPs an ideal choice for replacing conventional steel chassis automotive components. However, FRP’s face challenges from operating environment, in particular temperature and moisture.
Technical Paper

Continuous Fiber Reinforced Composite Container for N1 Category of Vehicles

2021-09-22
2021-26-0251
The small commercial vehicle business is driven by demand in logistic, last mile transportation and white goods market. And to cater these businesses operational and safety needs, they require closed container on vehicle. As of now, very few OEM’s provide regulatory certified container vehicle because of constrains to meet inertia class of the vehicle. This paper focuses on design of a durable and extremely reliable container, made of the low-cost economy class glass fibre & core material. The present work provides the means to design the composite container for the N1 category of the vehicle. The weight of after-market metal container ranges between 300-350 Kg for this category of vehicle, which affects the overall fuel economy and emission of the vehicle. A detailed CAE analysis is done to design composite container suitable to meet inertia class targets and to achieve weight reduction of 30-40% as compared to metal container.
Technical Paper

Development of Mount for Electric Powertrains - A Multi Degree of Freedom Optimization Approach

2020-04-14
2020-01-0417
The recent vehicle development demands for electric powertrain as against conventional fuels engines. The electric powertrain offers advantages in terms of cleaner and quieter operations. In electric vehicle, the conventional engine is replaced by electric motor operated on batteries. Here, the conventional engine refers to those powered by diesel, petrol, CNG and some hybrid vehicles using fuel as primary source for power generation. Thus, the system design approach for mount also changes. At present, various approaches are being followed to mount electric powertrain like conventional pendulum type, with or without cradle, Common or different motor and electric box mountings etc. The electric powertrain differs from conventional powertrain in terms of weights, mass moment of inertia, torque, NVH requirements like Key in Key off, idling, low frequency vibrations etc. Thus conventional mount will not necessarily meet NVH requirements for Electric powertrains.
Technical Paper

Latest Options for Replacing HFC-134a Refrigerant in MACs

2020-04-14
2020-01-1254
With the passage of the Kigali Amendment to the Montreal Protocol, HFC-134a refrigerant will be phased down in all markets worldwide, including those where automotive companies have been slow to embrace HFO-1234yf. Engineers are currently being challenged to design MAC systems using alternate low GWP refrigerants that are allowed by regulations, and are simultaneously cost-effective to manufacture, energy efficient, safe, reliable, affordable for consumers, and also suitable in electrified vehicles.
Technical Paper

Simulator Development for Steer-by-Wire Concept Evaluation

2019-01-09
2019-26-0099
In the recent years steering feel characteristics have emerged as one of the important brand image attributes of automotive OEMs. Since past few decades, the hydraulic assisted steering system (HPAS) on which lot of research was done to tune the steering feel has been taken over by electric power assisted steering (EPAS) system. The EPAS primarily uses an electric motor controlled by an electronic control unit to assist the driver in maneuvering the vehicle. The next big leap in the steering system advancement is steer-by-wire (SbW) technology where the mechanical linkage between the steering wheel and the road wheels is eliminated. The advantages of this system are ease to use, elimination of noise-vibration-harshness of steering system caused by road forces, modularly of steering system for packaging, improved visibility to front-end displays and road ahead and a fun to drive concept.
Technical Paper

Development of a Polymer Electrolyte Membrane Fuel Cell Stack for a Range Extender for Electric Vehicles

2019-01-09
2019-26-0087
Severe air pollution in cities caused largely by vehicular emissions, which requires urgent remedial measures. As automobiles are indispensable modes of personal and public mobility, pre-emptive efforts are necessary to reduce the adverse effects arising from their operation. A significant improvement in air quality can be achieved through large-scale introduction of vehicles with extremely low emission such as hybrid-electric and zero emission vehicles. Range extension of electric vehicles (EVs) is also of utmost importance to alleviate the handicap of restricted mileage of purely plug-in EVs as compared to conventional vehicles. This paper presents development of a polymer electrolyte membrane (PEM) fuel cell stack used for the range extender electric vehicles. The Fuel cell stack for range extender vehicle operated in a dead end mode using hydrogen and air as open cathode.
Technical Paper

Refurbished and Repower: Second Life of Batteries from Electric Vehicles for Stationary Application

2019-01-09
2019-26-0156
Rising environmental concerns and depleting natural resources have resulted in faster adoption of green technologies. These technologies are pushed by the government of states through certain schemes and policies as to make the orbit shift ensuring greener environment in near future. Major actions can be easily seen in transportation sector. Hybrid Electric Vehicle (EV), EV and Fuel cell EV are being deployed on roads rapidly but even though some challenges are still unsolved such as battery cost, fast charging and life cycle of the automotive battery. Automotive batteries (Lithium ions) are declared as unfit for automotive usage after the loss of 20% to 15% of their initial capacity. Still 80% to 85% of battery capacity can be utilized in stationary applications other than automotive. Stationary application doesn’t demand high current density or energy density from the battery pack as of automotive requirements.
Technical Paper

External Aerodynamic Drag Coefficient Prediction of Full Scale Passenger Car Based on Scale Model Assessment

2019-01-09
2019-26-0224
Aerodynamics performance evaluation of passenger cars is important during early vehicle development phase as it influences fuel economy, vehicle stability and drivability. Usually during initial styling phase, scale model is prepared and tested in wind tunnel to check aerodynamic performance like drag coefficient and these are used to predict aerodynamic performance of full scale model as testing on full scale model is costly and time consuming. To ensure its correctness, it is important to understand difference in physics from scale model to full scale model. In predicting full vehicle aerodynamics performance from scale model assessment; importance of Reynolds number, effect of geometric scaling on flow i.e. flow separation and wake zone change needs to be understood and addressed. This paper discusses about effect of scaling on aerodynamic flow behavior and drag.
X