Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Spot Weld Parameter on HAZ of Advanced High Strength Steel Joint

2024-01-16
2024-26-0187
To meet different target of light-weighting, lower fuel economy, crash safety and emission requirement, advanced high strength steel (AHSS) is commonly used in automotive vehicles and has become popular now a days. AHSS material up-to 1500 MPa is commonly used for structural components and major reinforcement of automotive BIW. Manufacturing of AHSS material requires precise control of chemical composition, and subsequent rolling and heat treatment to get optimum combination of required phases In most of the AHSS material microstructure, martensite is present along with ferrite or other phases. Hot stamp steel with strength level 1500 MPa strength also have martensite phase in microstructure after press hardening. However during heating and cooling cycle in resistance spot welding, martensite phase tempering affects hardness at Heat Affected Zone (HAZ).
Technical Paper

Performance Evaluation Study to Optimize the NOx Conversion Efficiency of SDPF Catalyst for BS6 RDE/OBD2 Engine Application

2024-01-16
2024-26-0161
To meet future emission levels, the automotive industry is trying to reduce tailpipe emissions through both possible pathways, i.e. emission from engines as well as and the development of novel catalytic emission control concepts. The present study will focus on the close coupled SCR on Filter commonly known as SDPF which is a main pathway to reduce NOx along with particulate mass and number for light duty passenger cars and sport utility vehicles for BS 6 RDE/OBD 2 and future legislation like BS-7. The SDPF is a challenging technology as it is critical component in exhaust after treatment system involving in NOx and PM/PN reductions hence careful optimization of this technology is necessary in terms of space velocity requirements, temperature, feed NOx emission levels, particulate mass and ash holding capacities, NH3 storage on the SDPF, and back pressure.
Technical Paper

A Detailed Study to Evaluate Sporty Sound Character of Passenger Cars

2024-01-16
2024-26-0207
Sound signature design is gaining more importance within global auto manufacturers. ‘Sportiness’ is one of the important point to consider while designing a sound character of a car for passionate drivers and those who love aggressive driving. Nowadays automobile manufacturers are more focused in developing a typical sound signature for their cars as a ‘unique design strategy’ to attract a niche segment of the market and to define their brand image. Exhaust system is one of the major aggregate determining the sound character of ICE vehicles which in turn has the direct influence on the customer perception of the vehicle and the Brand image and also the human comfort both inside and outside the cabin. This research work focuses on novel approaches to identify frequency range and order content by a detailed study of subjective feelings based on psycho-acoustics. Sound samples of various benchmark sporty vehicles have been studied and analyzed based on sound quality parameters.
Technical Paper

Evaluation of Interface Microstructure and Bonding Strength for Dissimilar Rotary Friction Welding of E46 and AA6061-T6

2024-01-16
2024-26-0195
Nowadays, friction welding is recognised as a highly productive and economic joining process for similar as well as dissimilar welding of automobile and aerospace components. Friction welding is the viable solution to offset the challenges of dissimilar fusion welding due to varying thermal and physical properties as well as limited mutual solubility. This study investigated interface microstructure and bonding strength of dissimilar rotary friction welding of 3.15 mm E46 plate and 45 mm AA6061-T6 rod. The direct drive rotary friction welding of E46 and AA6061-T6 is performed at combinations of two different friction times (4 sec and 7 sec) and forging pressure (108 MPa and 125 MPa). Mechanical bonding strength at the interface is evaluated based on the push-off and multistep shear tests. Further, a fractured steel surface was visually examined to understand the failure mechanism of welded joints.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

A Study on the Effect of an Acoustic Valve in the Exhaust Silencer for Noise Reduction in Automotive Application

2024-01-16
2024-26-0220
Customer preference towards quieter vehicles is ever-increasing. Exhaust tailpipe noise is one of the major contributors to in-cab noise and pass-by-noise of the vehicle. This research proposes a silencer with an integrated acoustic valve to reduce exhaust tailpipe noise. Incident exhaust wave coming from the engine strikes the acoustic valve and generates reflected waves. Incident waves and reflected waves cancel out each other which results in energy loss of the exhaust gas. This loss of energy results in reduced noise at the exhaust tailpipe end. To evaluate the effectiveness of the proposed silencer on the vehicle, NVH (Noise, vibration, and harshness) performance of the proposed silencer was compared with the existing silencer which is without an acoustic valve. A CNG (Compressed natural gas) Bus powered by a six-in-line cylinder engine was chosen for the NVH testing.
Technical Paper

Fatigue Assessment & Test Correlation of Seam Welded Joints Using Force Based Equivalent Structural Stress Solid Weld Approach

2024-01-16
2024-26-0268
The stress concentration at welded joints and small crack propagation from some pre-existing discontinuities at notched regions control the fatigue life of typical welded structures. There are numerous FEM stress-based weld fatigue assessment approaches available commercially which unify FEM stresses with various fatigue software codes embedded with international weld standards. However, FEM stress-based approaches predict extensively conservative results. Considerable efforts & subjective decision making is required to arrive at desired level of weld life correlation with physical test results, in terms of weld life and failure location. This is majorly because of inconsistency & inaccuracy in capturing the hot spot stress results due to stress singularities occurring at the notched regions owing to the mesh sensitivity, modeling complexity.
Technical Paper

Novel Exhaust System Architecture for Petroleum Oil Tanker Application Vehicle

2024-01-16
2024-26-0345
Petroleum Oil, Lubricants (POL) & Liquefied petroleum gas (LPG) tanker vehicles are special application segment that holds a significant Market share for commercial vehicles. These vehicles need to comply additional Safety regulations specified by Petroleum and explosives safety organization (PESO). For compliance to Rule-70, Protective heat shield on exhaust system needs to be designed and validated in order to avoid any catastrophic failure. The paper demonstrates the methodology to identify the worst case scenario for the existing commercial vehicle segment. Based on detail digital mock up (DMU) review Metallic heat shield was designed on after treatment system (ATS). The flexible heat shield was designed for exhaust pipe & joints in order to restrain the heat flow to the surrounding aggregates. After finalising design, CFD analysis was carried out to find out the thermal effects on various components and results within acceptable limits.
Technical Paper

Tweaking Elastomer by Addition of Nano Silica in Formulation

2024-01-16
2024-26-0197
The art of rubber formulation science always has a scope for fine-tuning with changing the parameters like base polymer grade selection, filler selection, curing system/cross link density, manufacturing methods, and many. Hence forth the filler manufacturer arrived differentiation of the filler already, this paper provides a description of rubber formulation tuning for damped vibration automotive applications. Acicular spiky spherical and hollow spherical nano silica selected as filler. With the thorough knowledge of elastomeric formulation and with doping different new selected silica grades, an optimized DOE was done. New formulation development was focused on isolation characteristics without affecting other necessary properties. The different inputs for finite element calculations was studied with the effects of doping different fillers and also studied the resultant virtual output in damping coefficients.
Technical Paper

Method of Generating Real-Time Digital Customer Feedback Loop for Connected Vehicle Applications

2024-01-16
2024-26-0258
This paper focuses on developing an application to extract insights from Android app reviews of Connected Car Applications and Twitter conversations related to OEM’ PV & EV Vehicles and features. Analyzing user sentiments and preferences in real-time can drive innovation and elevate OEMs' customer satisfaction. These insights have the potential to enhance vehicle performance and the manufacturing process. The application employs data collection and Natural Language Processing (NLP) techniques, including User-Driven Sentiment Classification and topic modeling, to analyze user sentiments and identify key discussion topics visually.
Technical Paper

Dynamic Stress-Strain and Fatigue Life Estimation Using Limited Set of Measured Accelerometer Data on Exhaust System Using System Equivalent Reduction and Expansion Process (SEREP)

2024-01-16
2024-26-0251
The dynamic response of structures to operating or occasional loads is crucial for design considerations, as it directly impacts the cumulative fatigue life. In practice, accurately discerning the precise loads and structural conditions, which involve considerations such as boundary conditions, geometry, and mechanical properties, can be quite challenging. Significant efforts are invested in identifying these factors and developing suitable prediction models. Nonetheless, the estimated forces and boundary conditions remain approximations, leading to uncertainties which affects the overall predictions and the analysis of how stress and strain develop in the structure during subsequent evaluations. Many researchers frequently employ a method where they estimate the forces acting on the system based on measurement data obtained at limited number of locations over the structure.
Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

Investigation on the Effect of Design Feature on Acoustic Performance of Exhaust Muffler for Vehicle

2022-12-23
2022-28-0488
Primarily, Acoustic performance of muffler are evaluated by insertion loss (IL) and backpressure/restriction. Where Insertion loss is mainly depends upon proper selection of muffler volume, which is proportional to Engine Swept volume, along with internal design configuration, which drives the acoustic principle. Same time, meeting the vehicle level pass by noise (PBN) value as per regulatory norms and system level backpressure as per engine specification sheet are the key evaluating criteria of any good exhaust system. Here, a new Reactive/Reflective type muffler of tiny size have been designed for heavy commercial vehicle application, which is unique in shape and innovative to meet desire performance. In this design, mainly sudden expansion, sudden contraction, flow through perforation and bell-mouth flow phenomenon are used.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Numerical Approach to Welding Process and its Integration in Assessment of Fatigue life of Component

2021-09-22
2021-26-0357
Welding is one of the most convenient and extensively used manufacturing process across every industry and is recognized as a cost effective joining technique. The root cause of most of the fabricated structural failures lies in the uncertainties associated with the welding process. It is prone to generate high residual stresses due to non-volumetric changes during heating and cooling cycle. These residual stresses have a significant impact on fatigue life of component leading to poor quality joints. To alleviate these effects, designers and process engineers rely upon their experience and thumb rules but has its own limitations. This approach often leads to conservative designs and pre-mature failures. Recent advances in computational simulation techniques provide us opportunity to explore the complex phenomenon and generate deep insights. The paper demonstrates the methodology to evaluate the residual stresses due to welding in virtual environment.
Technical Paper

Evolution of Multi Axis Suspension Test Rig from Reaction Type to Inertial Type

2021-09-22
2021-26-0471
This paper highlights the transition of multi-axis suspension test rig from fixed reacted type to semi-inertial type and the benefits derived thereof in simulation accuracies. The critical influence of ‘Mx’ and ‘Mz’ controls on simulation accuracies has been highlighted. The vital role of ‘Mz’ control in the resonance of wheel pan along ‘Z’ axis and thereof arresting unwanted failures modes in spindle has been duly emphasized. Finally, the role of constraints and boundary conditions on simulation accuracies has been demonstrated by replacing the reaction frame with vehicle body.
Technical Paper

Experimental Investigation on the Effect of Shell Design on Noise Quality and Performance of an Automotive Exhaust Muffler

2020-09-25
2020-28-0478
This research paper is dealing with development of a Hybrid Exhaust muffler with four different shell configurations (Internal design unaltered) and investigated the impact on noise performance and quality (perceived). Noise performance has been evaluated by measurement of Pass by Noise and near exhaust noise Level on a typical 16T -6-speeds transmission Truck. The experimental activity conducted based on DOE approach. From this study, it observed single shell with lower thickness have the poor NVH performance and perceived quality as well. Shell or booming noise is also observed with this configuration. Double shell with Ceramic blanket (throughout the length) sandwich configuration exhibited the best performance though this design is most expensive among the four mufflers.
Technical Paper

Adhesive Failure Prediction in Crash Simulations

2019-01-09
2019-26-0297
Structural adhesive is a good alternative to provide required strength at joinery of similar and dissimilar materials. Adhesive joinery plays a critical role to maintain structural integrity during vehicle crash scenario. Robust adhesive failure definitions are critical for accurate predictions of structural performance in crash Computer Aided Engineering (CAE) simulations. In this paper, structural adhesive material characterization challenges like comprehensive In-house testing and CAE correlation aspects are discussed. Considering the crash loading complexity, test plan is devised for identification of strength and failure characteristics at 0°, 45°, 75°, 90°, and Peel loading conditions. Coupon level test samples were prepared with high temperature curing of structural adhesive along with metal panels. Test fixtures were prepared to carryout testing using Instron VHS machine under quasi-static and dynamic loading.
Technical Paper

Optimization of Air Intake System and Exhaust System for Better Performance of Turbocharged Gasoline Engine

2018-04-03
2018-01-1424
Gasoline engines with Multi point fuel injection (MPFI) technology are being developed with naturally aspirated and/or turbocharged engines. Wherein a MPFI and turbo charged combination engines have certain challenges during development stages. One of the important challenge is design of air intake and exhaust system. With MPFI turbocharged engine combination, the under bonnet heat management is crucial task for drivability. The heat management of air intake plays a vital role in drivability part therefore a design layout of air intake path is an important aspect. Drivability can be categorized as low end, mid-range and top end drivability. Turbocharged MPFI engines have a typical phenomenon of ‘Lag in response’ in the low-end region. This ‘Lag in response’ phenomenon at low-end drivability region can be overcome through optimization of air intake system and optimization of exhaust back pressure.
Technical Paper

Experimental Investigation on the Effect of Two Different Multiple Injection Strategies on Emissions, Combustion Noise and Performances of an Automotive CRDI Engine

2016-04-05
2016-01-0871
An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
X