Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Targets Location for Automotive Radar Based on Compressed Sensing in Spatial Domain

2018-08-07
2018-01-1621
Millimeter wave automotive radar is one of the most important sensors in the Advanced Driver Assistance System (ADAS) and autonomous driving system, which detects the target vehicles around the ego vehicle via processing transmitted and echo signals. However, the sampling rate of classical radar signal processing methods based on Nyquist sampling theorem is too high and the resolution of range, velocity and azimuth can’t meet the requirement of highly autonomous driving, especially azimuth. In spatial domain, targets are sparse distribution in the detection range of automotive radar. To solve these problems, the algorithm for targets location based on compressed sensing for automotive radar is proposed in this paper. Besides, the feasibility of the algorithm is verified through the simulation experiments of traffic scene. The range-doppler-azimuth model can be used to estimate the distance, velocity and azimuth of the target accurately.
Technical Paper

Camera-Radar Data Fusion for Target Detection via Kalman Filter and Bayesian Estimation

2018-08-07
2018-01-1608
Target detection is essential to the advanced driving assistance system (ADAS) and automatic driving. And the data fusion of millimeter wave radar and camera could provide more accurate and complete information of targets and enhance the environmental perception performance. In this paper, a method of vehicle and pedestrian detection based on the data fusion of millimeter wave radar and camera is proposed to improve the target distance estimation accuracy. The first step is the targets data acquisition. A deep learning model called Single Shot MultiBox Detector (SSD) is utilized for targets detection in consecutive video frames captured by camera and further optimized for high real-time performance and accuracy. Secondly, the coordinate system of camera and radar are unified by coordinate transformation matrix. Then, the parallel Kalman filter is used to track the targets detected by radar and camera respectively.
Technical Paper

System Design and Model of a 3D 79 GHz High Resolution Ultra-Wide Band Millimeter-Wave Imaging Automotive Radar

2018-08-07
2018-01-1615
Automotive radar is an important environment perception sensor for advance driving assistance system. It can detect objects around the vehicle with high accuracy and it works in all bad weathers. For traditional automotive radar, it cannot measure the objects’ height. Thus, a manhole cover on the road surface or a guideboard high above the road would be taken erroneously as a non-moving car. In such cases, the adaptive cruise system would decelerate or stop the vehicle erroneously and make the driver uncomfortable. A 3D automotive radar with two-dimensional electronic scanning can measure the targets’ height as well as the targets’ azimuth angle. This paper presents a 79 GHz ultra-wide band automotive 3D imaging radar. Due to the 4 GHz wide bandwidth, the range resolution of this radar can be as small as 3.75 cm.
Technical Paper

A New Method of Target Detection Based on Autonomous Radar and Camera Data Fusion

2017-09-23
2017-01-1977
Vehicle and pedestrian detection technology is the most important part of advanced driving assistance system (ADAS) and automatic driving. The fusion of millimeter wave radar and camera is an important trend to enhance the environmental perception performance. In this paper, we propose a method of vehicle and pedestrian detection based on millimeter wave radar and camera. Moreover, the proposed method complete the detection of vehicle and pedestrian based on dynamic region generated by the radar data and sliding window. First, the radar target information is mapped to the image by means of coordinate transformation. Then by analyzing the scene, we obtain the sliding windows. Next, the sliding windows are detected by HOG features and SVM classifier in a rough detect. Then using the match function to confirm the target. Finally detecting the windows in a precision detection and merging the detecting windows. The target detection process is carried out in the following three steps.
X