Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Research on Collision Avoidance and Vehicle Stability Control of Intelligent Driving Vehicles in Harsh Environments

2022-12-16
2022-01-7128
Aiming at the problems of ineffective collision avoidance and vehicle instability in the process of vehicle emergency braking in road conditions with low adhesion and sudden change in adhesion coefficient, a stability-coordinated emergency braking and collision avoidance control system SEBCACS) is proposed. First, according to the motion of the ego vehicle and the target vehicle as well as the road adhesion conditions, a collision time model is proposed for evaluating the vehicle collision risk, and the expected deceleration required to avoid the collision is calculated. Then, the MPC method is used to calculate the yaw moment generated by the four-wheel braking force required to maintain vehicle stability according to the actual and reference yaw rate and side slip angle deviation. Then it is decided whether to implement additional yaw moment control according to the body stability evaluation results.
Technical Paper

Clutch Coordination Control for Series-Parallel DHT Mode Changing

2022-10-28
2022-01-7046
As a newly designed hybrid transmission, DHT (Dedicated Hybrid Transmission) owns the advantages of compact structure, multi-modes and excellent comprehensive performance. Compared with the traditional add-on hybrid transmission with one single motor, DHT uses one independent generator for engine starting and speed adjusting which can be largely improve the driving performance in the mode changing process. Based on the series-parallel DHT with wet clutch for power coupling, this paper firstly analyses the power coupling clutch device functionalities from the power flow viewpoint under normal and limp home condition. And for the changing process from series to parallel mode, a clutch coordination control strategy is designed by combining generator fast speed adjusting with clutch accurately pressure controlling to fulfill the fast driver intension response and clutch protection.
Technical Paper

Numeric Study on Torsional Characteristics of Dual Mass Flywheel with Circumferential ARC Spring

2019-04-02
2019-01-0934
The rapid development of automotive technology has promoted the application of higher efficiency engines, while also putting higher requirements on the control of crankshaft torsional vibration. The traditional clutch driven disc torsional vibration damper can no longer meet the current new vibration and noise reduction requirements. Under these circumstances adopting dual mass flywheel (DMF) could be an efficient measure to reduce powertrain torsional fluctuations. For the sake of studying the torsional characteristics of DMF, a dual mass flywheel with circumstance arc spring (DMF-CS) is taken as the research subject. Firstly, According to lumped mass model, a multi-degree of freedom torsional vibration model of DMF-CS is established, which takes the mutual conversion of dry friction and viscous friction into consideration. Then, the overall and partial torsion characteristics of dual mass flywheel are obtained through numerical analysis.
Technical Paper

The Nonlinear Characteristics Impact of Multi-Staged Stiffness Clutch Damper on the Vehicle Creeping

2016-04-05
2016-01-0431
The nonlinear characteristics impact of multi-staged stiffness clutch damper on the vehicle creeping is investigated by using the lumped-parameter modeling method as a certain mass-production passenger sedan is taken as the research subject. Firstly, a quasi-transient engine model of an inline four-cylinder and four-stroke engine, based on measured data of cylinder gas pressure versus crankshaft angle, is derived. Effective output torque is acquired and as the input excitation to the driveline system. Secondly, a 12-DOF (Degree of Freedom) nonlinear and branched powertrain system and vehicle longitudinal dynamics model is established. The differential mechanism characteristics and dynamic tire property based on the LuGre tire model are considered. Then, for a traditional two-staged stiffness clutch damper in consideration of hysteresis characteristics, vehicle powertrain system responses in both the time and frequency domain are obtained.
X