Refine Your Search

Topic

Search Results

Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

2024-04-09
2024-01-2015
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech.
Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

3-Dimentional Numerical Transient Simulation and Research on Flow Distribution Unevenness in Intake Manifold for a Turbocharged Diesel Engine

2024-04-09
2024-01-2420
The design of engine intake system affects the intake uniformity of each cylinder of the engine, which in turn has an important impact on the engine performance, the uniform distribution of EGR exhaust gas and the combustion process of each cylinder. In this paper, the constant-pressure supercharged diesel engine intake pipe is used as the research model to study the intake air flow unevenness of the intake pipe of the supercharged diesel engine. The pressure boundary condition at the outlet of each intake manifold is set as the dynamic pressure change condition. The three-dimensional numerical simulation of the transient flow process in the intake manifold of diesel engine is simulated and analyzed by using numerical method, and the change of the Intake air flow field in the intake manifold under different working conditions during the intake overlapping period is discussed.
Technical Paper

A Novel LiDAR Anchor Constraint Method for Localization in Challenging Scenarios

2023-12-20
2023-01-7053
Positioning system is a key module of autonomous driving. As for LiDAR SLAM system, it faces great challenges in scenarios where there are repetitive and sparse features. Without loop closure or measurements from other sensors, odometry match errors or accumulated errors cannot be corrected. This paper proposes a construction method of LiDAR anchor constraints to improve the robustness of the SLAM system in the above challenging environment. We propose a robust anchor extraction method that adaptively extracts suitable cylindrical anchors in the environment, such as tree trunks, light poles, etc. Skewed tree trunks are detected by feature differences between laser lines. Boundary points on cylinders are removed to avoid misleading. After the appropriate anchors are detected, a factor graph-based anchor constraint construction method is designed. Where direct scans are made to anchor, direct constraints are constructed.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

A Trust Establishment Mechanism of VANETs based on Fuzzy Analytical Hierarchy Process (FAHP)

2022-03-29
2022-01-0142
As the connectivity of vehicles increases rapidly, more vehicles have the capability to communicate with each other. Because Vehicular Ad-hoc NETworks (VANETs) have the characteristics of solid mobility and decentralization, traditional security strategies such as authentication, firewall, and access control are difficult to play an influential role. As a soft security method, trust management can ensure the security attributes of VANETs. However, the rapid growth of newly encountered nodes of the trust management system also increases the requirements for trust establishing mechanisms. Without a proper trust establishment mechanism, the trust value of the newly encountered nodes will deviate significantly from its actual performance, and the trust management system will suffer from newcomer attacks.
Technical Paper

Development and Assessment of Machine-Learning-Based Intake Air Charge Prediction Models for a CNG Engine

2022-03-29
2022-01-0166
Based on the sample data obtained from the bench test of a four-cylinder naturally aspirated CNG engine, three different machine learning models, BP, SVM and GRNN, were used to develop the intake charge prediction model for the intake system of this engine, in which engine speed, intake manifold pressure and intake temperature, VVT angle and gas injection time were taken as input parameters and intake charge was used as output parameter. The comparative analysis of the experimental data and model prediction data showed that the mean absolute error (MAE) of BP model, GRNN model, and SVM model were 2.69, 8.11and 5.13, and the root mean square error (MSE) were 3.53, 9.29, and 7.17, respectively. BP model has smaller prediction error and higher accuracy than SVM and GRNN models, which is more suitable for the prediction of the intake charge of this type of four-cylinder naturally aspirated CNG engine.
Technical Paper

Effect of Ethanol Reforming Gas Combined with EGR on Lean Combustion Characteristics of Direct Injection Gasoline Engine

2022-03-29
2022-01-0428
Ethanol reforming gas combined with EGR technology can not only improve thermal efficiency, but also reduce pollutant emission under lean combustion condition. In this investigation, GT-Power is used to carry out one-dimensional simulation model calculation and analysis to explore the combustion characteristics, economy performance of a direct injection gasoline engine when the excess air coefficient (λ) increases from 1 to 1.3 and the ethanol reforming gas mixing ratio increases from 0% to 30% at the working condition of 2000 r/min and 10 bar. Then the EGR system is introduced to deeply discuss the working characteristics of the direct injection gasoline engine when the EGR rate increases from 0% to 20%. The results show that the increase of λ leads to the decrease of in-cylinder pressure and the delay of the peak of cylinder pressure.
Journal Article

Investigation on the Impact of High-Temperature Calendar and Cyclic Aging on Battery Overcharge Performance

2022-03-29
2022-01-0698
With the degradation of lithium-ion batteries, the battery safety performance changes, which further influences the safe working window. In this paper, the pouch ternary lithium-ion battery whose rated capacity is 4.2 Ah is used as the research object to investigate the impact of the high-temperature calendar and cyclic aging on tolerance performance. The overcharge-to-thermal-runaway test is performed on the fresh cell and aged cell (90% SOH). The inflection point of voltage for aged cells appears earlier than that of the fresh cell, while the voltage corresponding to the inflection point is the same for them, which means that the voltage at which lithium plating occurs is the same. However, the voltage plateau and the crest voltage before thermal runaway of aged cell are significantly higher than that of the fresh cell. Besides, ohmic heat, reversible heat, and side reaction heat make contribution to the thermal runaway triggering.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

An Optimized Design of Multi-Chamber Perforated Resonators to Attenuate Turbocharged Intake System Noise

2021-04-06
2021-01-0669
The turbocharger air intake noise during transient conditions like wide open throttle and tip-in/out affects the passenger ride comfort. This paper aims to study an optimized design of multi-chamber perforated resonators to attenuate this noise. The noise produced by a turbocharger in a test vehicle has been measured to find out the noise spectral characteristics which can be used to design the acoustic targets including the amplitude and frequency range of transmission loss (TL). The structural parameters of the resonators are optimized based on genetic algorithm (GA) and two-dimensional prediction theory of the resonator TL. The optimized resonators are installed on the test vehicle to verify the actual noise reduction effect. The results suggest that the broadband noise has been eliminated, and subjective feelings are greatly improved.
Technical Paper

Analysis of Rotor Dynamics Characteristics of Jeffcot Rotor-Floating Ring Bearing System Including Heat Transfer

2021-04-06
2021-01-0641
With the increasing application of turbochargers on internal combustion engines, there are more and more examples of vibration faults in turbochargers. The dynamics characteristics of the bearing-rotor system of engine turbocharger systems have received extensive attention. The bearing-rotor system dynamics is a discipline that couples bearing fluid lubrication research and rotor dynamics. The lubrication characteristics of the bearing and the dynamic characteristics of the rotor must be studied at the same time. In this paper, the lubrication model of floating ring bearing of turbocharger is established, and the viscosity lubrication condition considering heat transfer effect is obtained. Based on the Capone cylindrical bearing oil film force model, the nonlinear oil film force equation of the floating ring bearing is deduced. Further the dynamic model of the Jeffcott rotor-floating ring bearing system is established.
Technical Paper

Effect of Injection Parameters on Particulate Matter Emission in a Direct Injection Gasoline Engine

2021-04-06
2021-01-0628
PN(Particle Number) emission limits are more stringent for gasoline vehicles in Chinese VI emission standards (6×1011 #/km). A EEPS engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulates emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, second injection ratio and second injection end time) on particle diameter distribution and particle number density of emission was Investigated. The experimental result indicates that the quantity of particles decrease with the increase of injection pressure obviously, especially at high load including the 20% reduction of the particle number density. When the engine is at low load, the accumulation mode particle emissions are higher than the nucleation mode particle emissions compared with high load, which present opposite results. The second injection can restrain engine knock at low speed.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Technical Paper

Towards High Accuracy Parking Slot Detection for Automated Valet Parking System

2019-11-04
2019-01-5061
Highly accurate parking slot detection methods are crucial for Automated Valet Parking (AVP) systems, to meet their demanding safety and functional requirements. While previous efforts have mostly focused on the algorithms’ capabilities to detect different types of slots under varying conditions, i.e. the detection rate, their accuracy has received little attention at this time. This paper highlights the importance of trustworthy slot detection methods, which address both the detection rate and the detection accuracy. To achieve this goal, an accurate slot detection method and a reliable ground-truth slot measurement method have been proposed in this paper. First, based on a 2D laser range finder, datapoints of obstacle vehicles on both sides of a slot have been collected and preprocessed. Second, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm has been improved to efficiently cluster these unevenly-distributed datapoints.
Technical Paper

Topology Optimization of Metal and Carbon Fiber Reinforced Plastic (CFRP) Structures under Loading Uncertainties

2019-04-02
2019-01-0709
Carbon fiber reinforced plastic (CFRP) composite materials have gained particular interests due to their high specific modulus, high strength, lightweight and perfect corrosion resistance. However, in reality, CFRP composite materials cannot be used alone in some critical places such as positions of joints with hinges, locks. Therefore, metal reinforcements are usually necessary in local positions to prevent structure damage. Besides, if uncertainties present, obtained optimal structures may experience in failures as the optimization usually pushes solutions to the boundaries of constraints and has no room for tolerance and uncertainties, so robust optimization should be considered to accommodate the uncertainties in practice. This paper proposes a mixed topology method to optimize metal and carbon fiber reinforced plastic composite materials simultaneously under nondeterministic load with random magnitude and direction.
Technical Paper

A Lumped Parameter Model Concerning the Amplitude-Dependent Characteristics for the Hydraulic Engine Mount with a Suspended Decoupler

2019-04-02
2019-01-0936
This paper presents a novel lumped parameter model(LPM) and its parameter identification method for the hydraulic engine mount(HEM) with a suspended decoupler. In the new model the decoupler membrane’s variable stiffness caused by being contact with the metallic cage is considered. Therefore, the decoupler membrane in the model can be taken as a spring. As a result, two parameters of the decoupler’s variable stiffness and the equivalent piston area are added. Then the finite element method is employed to analyze the suspended decoupler membrane’s variable stiffness characteristics under the contact state with the metallic cage. A piecewise polynomial is used to fit the decoupler membrane’s variable stiffness. To guarantee the symmetry of the stiffness, the polynomial only keeps the odd power coefficients.
Technical Paper

Numeric Study on Torsional Characteristics of Dual Mass Flywheel with Circumferential ARC Spring

2019-04-02
2019-01-0934
The rapid development of automotive technology has promoted the application of higher efficiency engines, while also putting higher requirements on the control of crankshaft torsional vibration. The traditional clutch driven disc torsional vibration damper can no longer meet the current new vibration and noise reduction requirements. Under these circumstances adopting dual mass flywheel (DMF) could be an efficient measure to reduce powertrain torsional fluctuations. For the sake of studying the torsional characteristics of DMF, a dual mass flywheel with circumstance arc spring (DMF-CS) is taken as the research subject. Firstly, According to lumped mass model, a multi-degree of freedom torsional vibration model of DMF-CS is established, which takes the mutual conversion of dry friction and viscous friction into consideration. Then, the overall and partial torsion characteristics of dual mass flywheel are obtained through numerical analysis.
X