Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

Optical Investigation of Lean Combustion Characteristics of Non-Uniform Distributed Orifice Passive Pre-Chamber on a High Compression Ratio GDI Engine

2024-04-09
2024-01-2101
The passive pre-chamber (PC) is valued for its jet ignition (JI) and is suitable for wide use in the field of gasoline direct injection (GDI) for small passenger cars, which can improve the performance of lean combustion. However, the intake, exhaust, and ignition combustion stability of the engine at low speed is a shortcoming that has not been overcome. Changing the structural design to increase the fluidity of the main chamber (MC) and pre-chamber (PC) may reduce jet ignition performance, affecting engine dynamics. This investigation is based on non-uniformly nozzles distributed passive pre-chamber, which is adjusted according to the working medium exchange between PC and MC. The advantages and disadvantages of the ignition mode of PC and SI in the target engine speed range are compared through optical experiments on a small single-cylinder GDI engine.
Technical Paper

Coordinated Longitudinal and Lateral Motions Control of Automated Vehicles Based on Multi-Agent Deep Reinforcement Learning for On-Ramp Merging

2024-04-09
2024-01-2560
The on-ramp merging driving scenario is challenging for achieving the highest-level autonomous driving. Current research using reinforcement learning methods to address the on-ramp merging problem of automated vehicles (AVs) is mainly designed for a single AV, treating other vehicles as part of the environment. This paper proposes a control framework for cooperative on-ramp merging of multiple AVs based on multi-agent deep reinforcement learning (MADRL). This framework facilitates AVs on the ramp and adjacent mainline to learn a coordinate control policy for their longitudinal and lateral motions based on the environment observations. Unlike the hierarchical architecture, this paper integrates decision and control into a unified optimal control problem to solve an on-ramp merging strategy through MADRL.
Technical Paper

Risk field enhanced game theoretic model for interpretable and consistent lane-changing decision makings

2024-04-09
2024-01-2566
This paper presents an integrated modeling approach for real-time discretionary lane-changing decisions by autonomous vehicles, aiming to achieve human-like behavior. The approach incorporates a two-player normal-form game and a novel risk field method. The normal-form game represents the strategic interactions among traffic participants. It captures the trade-offs between lane-changing benefits and risks based on vehicle motion states during a lane change. By continuously determining the Nash equilibrium of the game at each time step, the model decides when it is appropriate to change the lane. A novel risk field method is integrated with the game to model risks in the game pay-offs. The risk field introduces regions along the desired target lane with different time headway ranges and risk weights, capturing traffic participants' complex risk perceptions and considerations in lane-changing scenarios.
Technical Paper

Combining Dynamic Movement Primitives and Artificial Potential Fields for Lane Change Obstacle Avoidance Trajectory Planning of Autonomous Vehicles

2024-04-09
2024-01-2567
Lane change obstacle avoidance is a common driving scenario for autonomous vehicles. However, existing methods for lane change obstacle avoidance in vehicles decouple path and velocity planning, neglecting the coupling relationship between the path and velocity. Additionally, these methods often do not sufficiently consider the lane change behaviors characteristic of human drivers. In response to these challenges, this paper innovatively applies the Dynamic Movement Primitives (DMPs) algorithm to vehicle trajectory planning and proposes a real-time trajectory planning method that integrates DMPs and Artificial Potential Fields (APFs) algorithm (DMP-Fs) for lane change obstacle avoidance, enabling rapid coordinated planning of both path and velocity. The DMPs algorithm is based on the lane change trajectories of human drivers. Therefore, this paper first collected lane change trajectory samples from on-road vehicle experiments.
Technical Paper

A Method of Generating a Composite Dataset for Monitoring of Non-Driving Related Tasks

2024-04-09
2024-01-2640
Recently, several datasets have become available for occupant monitoring algorithm development, including real and synthetic datasets. However, real data acquisition is expensive and labeling is complex, while virtual data may not accurately reflect actual human physiology. To address these issues and obtain high-fidelity data for training intelligent driving monitoring systems, we have constructed a hybrid dataset that combines real driving image data with corresponding virtual data generated from 3D driving scenarios. We have also taken into account individual anthropometric measures and driving postures. Our approach not only greatly enriches the dataset by using virtual data to augment the sample size, but it also saves the need for extensive annotation efforts. Besides, we can enhance the authenticity of the virtual data by applying ergonomics techniques based on RAMSIS, which is crucial in dataset construction.
Technical Paper

Vulnerability analysis of DoIP implementation based on model learning

2024-04-09
2024-01-2807
The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them.
Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

Experimental Analysis on Noise and Vibration of Electric Drive System Focusing on Order Contribution Ratio

2024-04-09
2024-01-2339
In the process of automobile industrialization, integrated electric drive systems turn to be the mainstream transmission system of electric vehicles gradually. The main sources of noise and vibration in the chassis are from the gear reducer and motor system, as a replacement of engine. For improving the electric vehicles NVH performance, effective identification and quantitative analysis of the main noise sources are a significant basis. Based on the rotating hub test platform in the semi-anechoic chamber, in this experiment, an electric vehicle equipped with a three-in-one electric drive system is taken as the research object. As well the noise and vibration signals in the interior vehicle and the near field of the electric drive system are collected under the operating conditions of uniform speed, acceleration speed, and coasting with gears under different loads, and the test results are processed and analyzed by using the spectral analysis and order analysis theories.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

CMM: LiDAR-Visual Fusion with Cross-Modality Module for Large-Scale Place Recognition

2023-12-20
2023-01-7039
LiDAR and camera fusion have emerged as a promising approach for improving place recognition in robotics and autonomous vehicles. However, most existing approaches often treat sensors separately, overlooking the potential benefits of correlation between them. In this paper, we propose a Cross- Modality Module (CMM) to leverage the potential correlation of LiDAR and camera features for place recognition. Besides, to fully exploit potential of each modality, we propose a Local-Global Fusion Module to supplement global coarse-grained features with local fine-grained features. The experiment results on public datasets demonstrate that our approach effectively improves the average recall by 2.3%, reaching 98.7%, compared with simply stacking of LiDAR and camera.
Technical Paper

An Road Boundary Detection Algorithm Based on Radar that Can Improve Multiple-Target Tracking Performance for Autonomous Vehicles on Highway Condition

2023-12-20
2023-01-7042
Radar is playing more and important role in multiple object detection and tracking system due to the fact that Radar can not only determine the velocity instantly but also it is less influenced by environment conditions. However, Radar faces the problem that it has many detection clutter,false alarms and detection results are easily affected by the reflected echoes of road boundary in traffic scenes. Besides this, With the increase of the number of targets and the number of effective echoes, the number of interconnection matrices increases exponentially in joint probability data association, which will seriously affect the real-time and accuracy of high-speed scene algorithms.in the tracking system. So, A method of using millimeter wave radar to detect and fit the boundary guardrail of high-speed road is proposed, and the fitting results are applied to the vehicle detection and tracking system to improve the tracking accuracy.
Technical Paper

Test Concrete Scenarios Extraction of Lane-Changing Scenarios Based on China-FOT Naturalistic Driving Data

2023-12-20
2023-01-7055
On account of the insufficient lane-changing scenario test cases and the inability to conduct graded evaluation testing in current autonomous driving system field testing, this paper proposed an approach that combined data-driven and knowledge-driven methods to extract lane-changing test concrete scenarios with graded risk levels for field testing. Firstly, an analysis of the potentially hazardous areas in lane-changing scenarios was conducted to derive key functional lane-changing scenarios. Three typical key functional lane-changing scenarios were selected, namely, lane-changing with a preceding vehicle braking, lane-changing with a preceding vehicle in the same direction, and lane-changing with a rear cruising vehicle in the adjacent lane, and their corresponding safety goals were respectively analyzed. Secondly, the GAMAB criterion was introduced as an evaluation standard for autonomous driving systems.
Technical Paper

A Novel LiDAR Anchor Constraint Method for Localization in Challenging Scenarios

2023-12-20
2023-01-7053
Positioning system is a key module of autonomous driving. As for LiDAR SLAM system, it faces great challenges in scenarios where there are repetitive and sparse features. Without loop closure or measurements from other sensors, odometry match errors or accumulated errors cannot be corrected. This paper proposes a construction method of LiDAR anchor constraints to improve the robustness of the SLAM system in the above challenging environment. We propose a robust anchor extraction method that adaptively extracts suitable cylindrical anchors in the environment, such as tree trunks, light poles, etc. Skewed tree trunks are detected by feature differences between laser lines. Boundary points on cylinders are removed to avoid misleading. After the appropriate anchors are detected, a factor graph-based anchor constraint construction method is designed. Where direct scans are made to anchor, direct constraints are constructed.
Technical Paper

Critical Scenarios Based on Graded Hazard Disposal Model of Human Drivers

2023-12-20
2023-01-7054
In order to improve the efficiency of safety performance test for intelligent vehicles and construct the test case set quickly, critical scenarios based on graded hazard disposal model of human drivers are proposed, which can be used for extraction of test cases for safety performance. Based on the natural driving data in China Field Operational Test (China-FOT), the four-stage collision avoidance process of human drivers is obtained, including steady driving stage, risk judgment stage, collision reaction stage and collision avoidance stage. And there are two human driver states: general state and alert state. Then the graded hazard disposal model of human drivers is constructed.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Matching and Optimization Design of Electric Drive Assembly Mounting System of Electric Vehicle

2023-10-30
2023-01-7002
The design method for the powertrain mounting system in internal combustion engine vehicles is well-established. Electric vehicles experience higher vibration frequencies and more significant transient responses when accelerating or braking than fuel vehicles due to their high speed and fast response. Therefore, the design of the electric drive assembly mounting system requires further development. The modeling of electric drive assembly mounting systems often neglects the mounting bracket’s influence, which significantly affects the center of mass and rotational inertia of the electric drive assembly. This paper examines the effect of the mounting bracket in the electric drive assembly mounting system. It establishes a mathematical model with six degrees of freedom for the mounting system, considering the mounting bracket. By comparing the natural characteristics and the transient response, it is discussed whether the mass of the mounting bracket greatly influences the system.
X