Refine Your Search

Topic

Search Results

Technical Paper

Investigation of Compressor Deposit in Turbocharger for Gasoline Engines (Part 1: Research on Deposit Formation Mechanism)

2023-04-11
2023-01-0410
Contribution to carbon neutrality is one of the most important challenges for the automotive industry. As CO2 emission has been reduced through electrification such as hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV), internal combustion engines (ICEs) equipped in those powertrain systems are still necessary for the foreseeable future, and continuous efforts to improve fuel efficiency are demanded. To improve powertrain thermal efficiency, direct-injection turbocharged gasoline engines have been widely utilized in recent years. Super lean-burn combustion engine has been researched as a next generation of turbocharged gasoline engines. Further utilization of turbochargers is expected. Compared with turbocharged downsized gasoline engines available in the current market, much higher boost pressure must be utilized to realize the super lean-burn engines. As a result, compressor housing temperature will be very high compared with the current market one.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Machine Learning Based Technology for Reducing Engine Starting Vibration of Hybrid Vehicles

2019-06-05
2019-01-1450
Engine starting vibration of hybrid vehicle with Toyota hybrid system has variations even in the same vehicle, and a large vibration that occurs rarely may cause stress to the passengers. The contribution analysis based on the vibration theory and statistical analysis has been done, but the primary factor of the rare large vibration has not been clarified because the number of factors is enormous. From this background, we apply machine learning that can reproduce multivariate and complicated relationships to analysis of variation factors of engine starting vibration. Variations in magnitude of the exciting force such as motor torque for starting the engine and in-cylinder pressure of the engine and timing of these forces are considered as factors of the variations. In addition, there are also nonlinear factors such as backlash of gears as a factor of variations.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Journal Article

Effects of High Boiling Point Fuel Additives on Deposits in a Direct Injection Gasoline Engine

2017-10-08
2017-01-2299
The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

The New Toyota 1.2-Liter ESTEC Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1268
Toyota Motor Corporation is developing a series of engines belonging to its ESTEC (Economy with Superior Thermal Efficient Combustion) development concept. This paper describes the development of 8NR-FTS after the subsequent launch of the 2.0-liter DI Turbocharged 8AR-FTS. 8NR-FTS is a 1.2-liter inline 4-cylinder spark ignition downsized turbocharged direct injection (DI) gasoline engine. By following the same basic concepts as 8AR-FTS engine [1], the 8NR-FTS incorporates various fuel efficient technologies such as a cylinder head with an integrated exhaust manifold, the Atkinson cycle using the center-spooled variable valve timing with mid-position lock system (VVT-iW), and intensified in-cylinder turbulence to achieve high-speed combustion.
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Technical Paper

Development of New Continuously Variable Transmission for 2.0-Liter Class Vehicles

2015-04-14
2015-01-1101
In response to increasing demands for measures to conserve the global environment and the introduction of more stringent CO2 emissions regulations around the world, the automotive industry is placing greater focus on reducing levels of CO2 through the development of fuel-efficient technologies. With the aim of improving fuel economy, a new continuously variable transmission (CVT) has been developed for 2.0-liter class vehicles. This new CVT features various technologies for improving fuel economy including a coaxial 2-discharge port oil pump system, wider ratio coverage, low-viscosity CVT fluid, and a flex start system. This CVT is also compatible with a stop and start (S&S) system that reduces fuel consumption by shutting off the engine while the vehicle is stopped. In addition, the development of the CVT improves driveability by setting both the driving force and engine speed independently.
Journal Article

Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine

2014-10-13
2014-01-2785
Gasoline engine downsizing combined with a turbocharger is one of the more effective approaches to improve fuel efficiency without sacrificing power performance. The benefit comes from lower pumping loss, lower mechanical friction due to ‘downsizing’ of the engine displacement and ‘down-speeding’ of the engine by using higher transmission gear ratios which is allowed by the higher engine torque at lower engine speeds. However abnormal combustion referred to as Low-Speed Pre-ignition (LSPI) is known to be able to occur in low-speed and high-torque conditions. It is a potential restriction to maximize the engine performance and its benefit, therefore prevention of LSPI is strongly desired for long-term durability of engine performance. According to recent technical reports, auto-ignition of an engine oil droplet in a combustion chamber is believed to be one of major contributing factors of LSPI and its formulations have a significant effect on LSPI frequency.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Journal Article

Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine

2014-04-01
2014-01-1218
This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
Journal Article

Research into Engine Friction Reduction under Cold Conditions - Effect of Reducing Oil Leakage on Bearing Friction

2014-04-01
2014-01-1662
Fuel efficiency improvement measures are focusing on both cold and hot conditions to help reduce CO2 emissions. Recent technological trends for improving fuel economy such as hybrid vehicles (HVs), engine start and stop systems, and variable valve systems feature expanded use of low-temperature engine operation regions. Under cold conditions (oil temperature: approximately 30°C), fuel consumption is roughly 20% greater than under hot conditions (80°C). The main cause of the increased friction under cold conditions is increased oil viscosity. This research used the motoring slipping method to measure the effect of an improved crankshaft bearing, which accounts for a high proportion of friction under cold conditions. First, the effect of clearance was investigated. Although increasing the clearance helped to decrease friction due to the oil wedge effect, greater oil leakage reduced the oil film temperature increase generated by the friction.
Technical Paper

Development of New Generation Continuously Variable Transmission

2014-04-01
2014-01-1728
In response to global demands for environmental conservation, the automotive industry is placing greater focus on the development of fuel-efficient technologies to help reduce global CO2 emissions. With the aim of simultaneously improving fuel economy and driveability, TOYOTA has developed a new continuously variable transmission (CVT) vehicles in North America equipped with a 1.8-liter engine [1]. This new CVT features various technologies for improving fuel economy, including: the world's first coaxial 2-discharge port oil pump system, wider ratio coverage, a flex start system, low-viscosity CVT fluid, and a higher final gear ratio. This paper outlines the configuration, characteristics, performance, and new technologies of this CVT.
Technical Paper

Development of Driving Force Control Technology of CVT for North American Market

2014-04-01
2014-01-1730
Toyota Motor Corporation developed a continuously variable transmission (CVT), unit K313, to satisfy the rising demand for improved fuel economy. This transmission was installed in the North American market Corolla for the 2014 model year. In this market, the driveability demands for automatic transmissions (AT) are very high. Additionally, the market is dominated by conventional AT with fixed gear ratios, leaving CVTs in the minority. In order to increase the volume and acceptance of CVTs in North America, excellent driveability had to be ensured. The key driveability advantage of CVTs is the ability to change gear ratio continuously without engaging or disengaging clutches. This allows for smooth driving without any shocks or gaps in drive force; however, it can also feel strange to drivers of conventional AT.
X