Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Reducing Vehicle Glass Sensitivity to Turbulent Pressure

2021-08-31
2021-01-1125
Vehicle interior wind noise is typically managed through the overall exterior geometry of the vehicle, mirror shape and mounting location, sealing features and glass thickness and damping. Prior research has distinguished between contribution of fluctuating pressure due to air turbulence as compared to acoustic pressure to a passenger vehicles exterior at highway speeds. Because of the large difference in propagation speed between turbulent and acoustic pressure for on-road passenger vehicles, the structural response of the glass to turbulent versus acoustic pressure is not the same. The acoustic coincidence frequency of door glass is typically in the 2-3 kHz range. Turbulent coincidence frequency is much lower, and the effective transmission loss (TL) of the glass depends on the mix of turbulent and acoustic pressure on the exterior surface of the glass.
Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Model Based Control for Premixed Charge Compression Ignition Diesel Engine

2020-04-14
2020-01-1150
Premixed charge compression ignition (PCCI) combustion is effective in reducing harmful exhaust gas and improving the fuel consumption of diesel engines [1]. However, PCCI combustion has a problem of exhibiting lower combustion stability than diffusive combustion [2, 3], which makes it challenging to apply to mass production engines. Its low combustion stability problem can be overcome by implementing complicated injection control strategies that account for variations in environmental and engine operating conditions as well as transient engine conditions, such as turbocharging delay, exhaust gas recirculation (EGR) delay, and intake air temperature delay. Although there is an example where the combustion mode is switched according to the intake O2 fraction [4], it requires a significant number of engineering-hours to calibrate multiple combustion modes. And besides, such switching combustion modes tends to have a risk of discontinuous combustion noise and torque.
Technical Paper

Study of Simple Detection of Gasoline Fuel Contaminants Contributing to Increase Particulate Matter Emissions

2020-04-14
2020-01-0384
The reduction of particulate emissions is one of the most important challenges facing the development of future gasoline engines. Several studies have demonstrated the impact of fuel chemical composition on the emissions of particulate matter, more particularly, the detrimental effect of high boiling point components such as heavy aromatics. Fuel contamination is likely to become a critical issue as new regulations such as Real Driving Emissions RDE involves the use of market fuel. The objective of this study is to investigate several experimental approaches to detect the presence of Diesel contamination in Gasoline which is likely to alter pollutant emissions. To achieve this, a fuel matrix composed of 12 fuels was built presenting diesel fuel in varying concentrations from 0.1 to 2% v/v. The fuel matrix was characterized using several original techniques developed in this study.
Technical Paper

Effect of High RON Fuels on Engine Thermal Efficiency and Greenhouse Gas Emissions

2019-04-02
2019-01-0629
Historically, greenhouse gas (GHG) emissions standards for vehicles have focused on tailpipe emissions. However, sound environmental policy requires a more holistic well-to-wheels (WTW) assessment that includes both production of the fuel and its use in the vehicle. The present research explores the net change in WTW GHG emissions associated with moving from regular octane (RO) to high octane (HO) gasoline. It considers both potential increases in refinery emissions from producing HO fuel and potential reductions in vehicle emissions through the use of fuel-efficient engines optimized for such fuel. Three refinery configurations of varying complexity and reforming capacity were studied. A set of simulations covering different levels of HO gasoline production were run for each refinery configuration.
Technical Paper

Development of High Accuracy NOx Sensor

2019-04-02
2019-01-0749
This paper presents an improvement in the accuracy of NOx sensors at high NOx concentration regions by optimizing the manufacturing process, sensor electrode materials and structure, in order to suppress the deterioration mechanism of sensor electrodes. Though NOx sensors generally consist of Pt/Au alloy based oxygen pump electrodes and Pt/Rh alloy based sensor electrodes, detailed experimental analysis of aged NOx sensors showed changes in the surface composition and morphology of the sensor electrode. The surface of the sensor electrode was covered with Au, which is not originally contained in the electrode, resulting in a diminished active site for NOx detection on the sensor electrode and a decrease in sensor output. Theoretical analysis using CAE with molecular dynamics supported that Au tends to be concentrated on the surface of the sensor electrode.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition

2018-09-10
2018-01-1741
Among the challenges for the future facing the development of gasoline engines, one of the most important is the reduction of particles emissions. This study proposes a critical and objective evaluation of the influence of fuel characteristics on gasoline particles emission through the use of Fuel Particle Indices. For this, a selected fuel matrix composed of 22 fuels was built presenting different volatility and chemical composition (content in total aromatics, heavy cuts and ethanol). To represent the fuel sooting tendency, seven Fuel Particle Indices were selected based on a literature review, namely, Particulate Matter Index (PMI), Particulate Number index (PNI), Threshold Sooting index (TSI), Smoke point (SP), Oxygen Extended Sooting Index (OESI), Simplified index 1 and 2 (sPMI 1, sPMI 2). These indices were computed on the fuel matrix and compared on the basis of three main axes. First, the sensitivity to fuel variation.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

The Development of a New V6 3.5L Turbocharged Gasoline Engine

2018-04-03
2018-01-0366
For the launch of the redesigned Lexus LS, a new 3.5 L V6 twin turbo engine has been developed aiming at unparalleled performance on four axes, “driving pleasure”, “power-performance”, “quietness” and “fuel economy”. To achieve outstanding power-performance and high thermal efficiency, the specifications have been optimized for high speed combustion. The maximum torque of 600 Nm, power of 310 kW (yielding specific power of 90 kW/L), and the maximum thermal efficiency of 37% have been achieved using several new technologies including a high efficiency turbocharger. A prototype vehicle equipped with this engine and Direct-Shift 10AT achieved a 0-60 mph acceleration time of 4.6 sec, with extremely good CAFE combined fuel economy of 23 mpg and power-performance aligned with V8 turbocharged offerings from competing OEM’s.
Technical Paper

Using the Modal Response of Window Vibrations to Validate SEA Wind Noise Models

2017-06-05
2017-01-1807
The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
Technical Paper

The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine

2017-03-28
2017-01-1021
In order to adapt to energy security and the changes of global-scale environment, further improvement of fuel economy and adaptation to each country’s severer exhaust gas emission regulation are required in an automotive engine. To achieve higher power performance with lower fuel consumption, the engine’s basic internal design such as an engine block and cylinder head were changed and the combustion speed was dramatically increased. Consequently, stroke-bore ratio and valve layout were optimized. Also, both flow coefficient and intake tumble ratio port were improved by adopting a laser cladded valve seat. In addition, several new technologies were adopted. The Atkinson cycle using a new Electrical VVT (Variable Valve Timing) and new combustion technology adopting new multi-hole type Direct fuel Injector (DI) improved engine power and fuel economy and reduced exhaust emissions.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Technical Paper

Technique of ECU Circuit Design Management for Automotive Ethernet

2017-03-28
2017-01-0021
In recent years, the demand for high-speed/high-bandwidth communication for in-vehicle networks has been increasing. This is because the usage of high-resolution screens and high-performance rear seat entertainment (RSE) systems is expanding. Additionally, it is also due to the higher number of advanced driver assistance systems (ADAS) and the future introduction of autonomous driving systems. High-volume data such as high definition sensor images or obstacle information is necessary to realize these systems. Consequently, automotive Ethernet, which meets the requirements for high-speed/high-bandwidth communication, is attracting a lot of attention. The application of automotive Ethernet to in-vehicle networks requires that technology developments satisfy EMC performance requirements. In-vehicle EMC requirements consist of two parts: emission and immunity. The emission requirement is to restrict the electromagnetic noise emitted from vehicle.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Technical Paper

Power Plant Model of Fuel Consumption and Vibration for Vehicle Concept Planning

2015-06-15
2015-01-2253
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration in advance. This can be accomplished using virtual engine specifications and a virtual vehicle frame. In this paper, I will show the power plant model with electric starter and battery that can predict fuel economy, combustion heat results and transient torque. The power plant is a 1.3L 4cyl designed for NA Spark Ignition. The power plant model was realized using an energy based model using VHDL-AMS. Here, VHDL-AMS is modeling language stored in IEC international standard (IEC61691-6) and can realize multi physics in 1D simulation. The modeling language supports electrical, magnetic, thermal, mechanical, fluidic and compressive fluidic domains. The model was created in house using VHDL-AMS and validated on ANSYS SIMPLORER. The simulated results of fuel energy consumption agreed with driving energy and amount of energy losses, e.g. cooling loss, exhaust loss.
X