Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Three-Way Catalytic Reaction in an Electric Field for Exhaust Emission Control Application

2021-04-06
2021-01-0573
To prevent global warming, further reductions in carbon dioxide are required. It is therefore important to promote the spread of electric vehicles powered by internal combustion engines and electric vehicles without internal combustion engines. As a result, emissions from hybrid electric vehicles equipped with internal combustion engines should be further reduced. Interest in catalytic reactions in an electric field with a higher catalytic activity compared to conventional catalysts has increased because this technology consumes less energy than other electrical heating devices. This study was therefore undertaken to apply a catalytic reaction in an electric field to an exhaust emission control. First, the original experimental equipment was built with a high voltage system used to conduct catalytic activity tests.
Technical Paper

Development of an Emergency Stop Assist System

2019-04-02
2019-01-1025
Social concern with traffic accidents caused by driver’s medical emergencies has been growing for the last several years. In Japan, the government issued technical guidelines in June 2016 to promote systems that deal with such accidents. Based on those guidelines, the Emergency Stop Assist system was manufactured in October 2017 to help reduce such accidents. This article first describes its purpose and core design, then presents an overview of the system, and finally discusses its effectiveness.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Application of Models of Short Circuits and Blow-Outs of Spark Channels under High-Velocity Flow Conditions to Spark Ignition Simulation

2018-09-10
2018-01-1727
This report describes the implementation of the spark channel short circuit and blow-out submodels, which were described in the previous report, into a spark ignition model. The spark channel which is modeled by a particle series is elongated by moving individual spark particles along local gas flows. The equation of the spark channel resistance developed by Kim et al. is modified in order to describe the behavior of the current and the voltage in high flow velocity conditions and implemented into the electrical circuit model of the electrical inductive system of the spark plug. Input parameters of the circuit model are the following: initial discharge energy, inductance, internal resistance and capacitance of the spark plug, and the spark channel length obtained by the spark channel model. The instantaneous discharge current and the voltage are obtained as outputs of the circuit model.
Technical Paper

Critical Analysis of PM Index and Other Fuel Indices: Impact of Gasoline Fuel Volatility and Chemical Composition

2018-09-10
2018-01-1741
Among the challenges for the future facing the development of gasoline engines, one of the most important is the reduction of particles emissions. This study proposes a critical and objective evaluation of the influence of fuel characteristics on gasoline particles emission through the use of Fuel Particle Indices. For this, a selected fuel matrix composed of 22 fuels was built presenting different volatility and chemical composition (content in total aromatics, heavy cuts and ethanol). To represent the fuel sooting tendency, seven Fuel Particle Indices were selected based on a literature review, namely, Particulate Matter Index (PMI), Particulate Number index (PNI), Threshold Sooting index (TSI), Smoke point (SP), Oxygen Extended Sooting Index (OESI), Simplified index 1 and 2 (sPMI 1, sPMI 2). These indices were computed on the fuel matrix and compared on the basis of three main axes. First, the sensitivity to fuel variation.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

Ride Comfort Enhancement Using Active Stabilizer

2018-04-03
2018-01-0563
Ongoing research on active stabilizers involves not only control of the roll angle of the vehicle based on steering input but also improving ride comfort by reducing roll vibration caused by the antiphase road surface input. In that context, roll skyhook control, which applies skyhook theory to provide feedback on the vehicle roll and drive the actuators, has already been presented. Although vibration in all frequency bands can be reduced if there is no control delay, time lags or phase delays in control elements such as the communication, computation, low-pass filter, or actuators can amplify vibration. Consequently, a sufficient effect of controlling cannot be obtained. This paper will address wheelbase filtering, which produces a frequency that minimizes roll oscillation, and is used to suppress the influence of the undesirable vibration.
Journal Article

Effects of High Boiling Point Fuel Additives on Deposits in a Direct Injection Gasoline Engine

2017-10-08
2017-01-2299
The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
Technical Paper

Development of High Accuracy Rear A/F Sensor

2017-03-28
2017-01-0949
New 2A/F systems different from usual A/F-O2 systems are being developed to cope with strict regulation of exhaust gas. In the 2A/F systems, 2A/F sensors are equipped in front and rear of a three-way catalyst. The A/F-O2 systems are ideas which use a rear O2 to detect exhaust gas leaked from three-way catalyst early and feed back. On the other hand, the 2A/F systems are ideas which use a rear A/F sensor to detect nearly stoichiometric gas discharged from the three-way catalyst accurately, and to prevent leakage of exhaust gas from the three-way catalyst. Therefore, accurate detection of nearly stoichiometric gas by the rear A/F sensor is the most importrant for the 2A/F systems. In general, the A/F sensors can be classified into two types, so called, one-cell type and two-cell type. Because the one-cell type A/F sensors don’t have hysteresis, they have potential for higher accuracy.
Journal Article

Development of Ignition Technology for Dilute Combustion Engines

2017-03-28
2017-01-0676
In recent years, from a viewpoint of global warming and energy issues, the need to improve vehicle fuel economy to reduce CO2 emission has become apparent. One of the ways to improve this is to enhance engine thermal efficiency, and for that, automakers have been developing the technologies of high compression ratio and dilute combustion such as exhaust gas recirculation (EGR), and lean combustion. Since excessive dilute combustion causes the failure of flame propagation, combustion promotion by intensifying in-cylinder turbulence has been indispensable. However, instability of flame kernel formation by gas flow fluctuation between combustion cycles is becoming an issue. Therefore, achieving stable flame kernel formation and propagation under a high dilute condition is important technology.
Journal Article

Analysis of Driver Kinematics and Lower Thoracic Spine Injury in World Endurance Championship Race Cars during Frontal Impacts

2017-03-28
2017-01-1432
This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Technical Paper

Development of Advanced Three-Way Catalyst with Improved NOx Conversion

2015-04-14
2015-01-1005
Countries and regions around the world are tightening emissions regulations in reaction to the increasing awareness of environmental conservation. At the same time, growing concerns about the depletion of raw materials as vehicle ownership continues to increase is prompting automakers to look for ways of decreasing the use of platinum-group metals (PGMs) in the exhaust systems. This research has developed a new catalyst with strong robustness against fluctuations in the exhaust gas and excellent nitrogen oxide (NOx) conversion performance. This catalyst incorporates rhodium (Rh) clusters with a particle size of several nanometers, and stabilized CeO2-ZrO2 solid-solution (CZ) with a pyrochlore crystal structure as a high-volume oxygen storage capacity (OSC) material with a slow O2 storage rate.
Technical Paper

Combustion Development to Achieve Engine Thermal Efficiency of 40% for Hybrid Vehicles

2015-04-14
2015-01-1254
In recent years, enhancing engine thermal efficiency is strongly required. Since the maximum engine thermal efficiency is especially important for HVs, the technologies for improving engine thermal efficiency have been developed. The current gasoline engines for hybrid vehicles have Atkinson cycle with high expansion ratio and cooled exhaust gas recirculation (EGR) system. These technologies contribute to raise the brake engine thermal efficiency to more than 38%.In the near future the consumers demand will push the limit to 40% thermal efficiency. To enhance engine thermal efficiency, it is essential to improve the engine anti-knock quality and to decrease the engine cooling heat loss. To comply with improving the anti-knock quality and decreasing the cooling heat loss, it is known that the cooled EGR is an effective way.
Journal Article

Experimental Study of the Impact of Diesel/Biodiesel Blends Oxidation on the Fuel Injection System

2014-10-13
2014-01-2767
The stability of Diesel/Biodiesel blends can play an important role in deposits formation inside the fuel injection system (FIS). The impact of the stability of FAME/Diesel fuel blends on lacquer deposits formation and on the behavior and reliability of the FIS was investigated using blends of Rapeseed and Soybean methyl esters (RME, SME) and conventional Diesel fuel (volume fractions of RME and SME range from 0 to 20%v/v). Fuels were aged under accelerated conditions and tested on an injection test rig according to an operating cycle developed to provoke injector needle blocking. The soaking duration was found to affect injector fouling. A relationship between the injector fouling tendency and the fuel stability was established. Under current test condition, injectors fouling increased with fuel oxidation measured with Total-Acid-Number.
Journal Article

Engine Oil Development for Preventing Pre-Ignition in Turbocharged Gasoline Engine

2014-10-13
2014-01-2785
Gasoline engine downsizing combined with a turbocharger is one of the more effective approaches to improve fuel efficiency without sacrificing power performance. The benefit comes from lower pumping loss, lower mechanical friction due to ‘downsizing’ of the engine displacement and ‘down-speeding’ of the engine by using higher transmission gear ratios which is allowed by the higher engine torque at lower engine speeds. However abnormal combustion referred to as Low-Speed Pre-ignition (LSPI) is known to be able to occur in low-speed and high-torque conditions. It is a potential restriction to maximize the engine performance and its benefit, therefore prevention of LSPI is strongly desired for long-term durability of engine performance. According to recent technical reports, auto-ignition of an engine oil droplet in a combustion chamber is believed to be one of major contributing factors of LSPI and its formulations have a significant effect on LSPI frequency.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
Journal Article

Thermal Analysis of the Exhaust Line Focused on the Cool-Down Process

2014-04-01
2014-01-0655
At the engine restart, when the temperature of the catalytic converter is low, additional fuel consumption would be required to warm up the catalyst for controlling exhaust emission.The aim of this study is to find a thermally optimal way to reduce fuel consumption for the catalyst warm up at the engine restart, by improving the thermal retention of the catalytic converter in the cool down process after the previous trip. To make analysis of the thermal flow around the catalytic converter, a 2-D thermal flow model was constructed using the thermal network method. This model simulates the following processes: 1) heat conduction between the substrate and the stainless steel case, 2) heat convection between the stainless steel case and the ambient air, 3) heat convection between the substrate and the gas inside the substrate, 4) heat generation due to chemical reactions.
Journal Article

New Combustion Concept for Turbocharged Gasoline Direct-Injection Engines

2014-04-01
2014-01-1210
The advantages of gasoline direct-injection are intake air cooling due to fuel vaporization which reduces knocking, additional degrees of freedom in designing a stratified injection mixture, and capability for retarded ignition timing which shortens catalyst light-off time. Stratified mixture combustion designs often require complicated piston shapes which disturb the fluid flow in the cylinder, leading to power reduction, especially in turbocharged gasoline direct-injection engines. Our research replaced the conventional shell-type shallow cavity piston with a dog dish-type curved piston that includes a small lip to facilitate stratification and minimize flow disturbance. As a result, stable stratified combustion and increased power were both achieved.
Journal Article

Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine

2014-04-01
2014-01-1218
This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
X