Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Numerical Analysis of Fuel Behavior in a Port-Injection Gasoline Engine

1997-02-24
970878
Three-dimensional numerical analysis of fuel liquid and mixture behavior in a port-injection gasoline engine is assessed by comparing calculations with measurements. The fuel mass distributed in the intake port and cylinder is measured using an engine with hydraulic valve and gas sampling system. The experimental results show that about half of the fuel mass per injection enters the cylinder, and the rest stays in the port. The difference of the mass fraction of injected fuel directly entering the cylinder is small between the cases of single pulse injection and serial injection. Therefore, three-dimensional calculation presupposing single pulse injection has difficulty in predicting the in-cylinder mixture formation process, although it can analyze the amount of fuel wetting the port wall. The calculations are performed for a port-injection engine, and the differences of fuel behavior with respect to swirl control valve opening and wall temperature are discussed.
Technical Paper

A Multi-Dimensional Numerical Method for Predicting Warm-Up Characteristic of Automobile Catalytic Converter Systems

1995-10-01
952413
A multi-dimensional numerical method for predicting the warm-up characteristic of automobile catalytic converter systems was developed to effectively design catalytic converter systems which achieve low tail pipe emissions with satisfactory packagebility. The features of the method are; (1) consideration of the governing phenomena such as gas flow, heat transfer, and chemical reactions (2) capability of predicting warm-up characteristic for not only the catalytic converters but also the system as a whole during emission test modes such as the USA LA-4 mode. The description of the method is presented. The experimental verifications of the method were conducted to assure the accuracy of it. The effect of design parameters such as electrically heated catalyst (EHC), high loading of noble metal and thin honeycomb wall on warm-up characteristic of the catalyst are analyzed in the paper.
Technical Paper

In-Cylinder Gas Motion of Multivalve Engine-Three Dimensional Numerical Simulation

1986-02-01
860465
The characteristic of In-Cylinder gas motion of a multivalve engine is compared with a single intake valve engine, which have been predicted by a three-dimensional numerical simulation and flow visualization. The measured intake valve outlet velocity from helical and straight port was adopted as the boundary conditions. The computer graphics technique has been utilized to express the predicted numerical results as moving picture like visualized flow. This flow pattern was compared with the actual flow pattern visualized with metaldehyde as the tracer using the bottom viewed engine, which showed good agreement. The prediction for the multivalve engine showed that the swirl velocity is rapidly reduced by interaction between the flows from the two port, but the turbulence kinetic energy is similar to that in the engines with a single intake valve with helical port.
X