Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part I: Concepts for Fuel Molecule Candidate

2019-12-19
2019-01-2255
As part of efforts to address climate change and improve energy security, researchers have improved the thermal efficiency of engines by expanding the lean combustion limit. To further expand the lean combustion limit, the authors focused not only on engine technology but the chemical reactivity of various fuel molecules. Furan and anisole were among the fuel molecules selected, based on the idea that promising candidates should enhance the flame propagation speed and have good knocking resistance. Engine testing showed that the lean limit can be expanded by using fuels with the right molecular structures, resulting in higher thermal efficiency.
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part II: Consideration of Engine Combustion Characteristics

2019-12-19
2019-01-2256
To correspond to the social requirements such as climate change, air pollution, and energy security, enhancing the engine thermal efficiency is strongly required in these days. As for the specific engine technologies to improve the engine thermal efficiency, Atkinson cycle, cooled EGR (Exhaust Gas Recirculation), and low friction technologies have been developed [1–4]. In regard to combustion technology, lean boosted concept has a potential to reduce CO2 emission because lean boosted concept is expected to enhance the engine thermal efficiency. Although expanding lean combustion limit is important for both increasing the engine thermal efficiency and reducing NOx emission, there is a limitation to realize stable lean combustion with SI (Spark Ignition) gasoline engine. In this study, fuel effects on the combustion characteristics from the viewpoint of chemical reaction capability are focused on.
Journal Article

On the Role of Nitric Oxide for the Knock-Mitigation Effectiveness of EGR in a DISI Engine Operated with Various Gasoline Fuels

2019-12-19
2019-01-2150
The knock-suppression effectiveness of exhaust-gas recirculation (EGR) can vary between implementations that take EGR gases after the three-way catalyst and those that use pre-catalyst EGR gases. A main difference between pre-and post-catalyst EGR gases is the level of trace species like NO, UHC, CO and H2. To quantify the role of NO, this experiment-based study employs NO-seeding in the intake tract for select combinations of fuel types and compression ratios, using simulated post-catalyst EGR gases as the diluent. The four investigated gasoline fuels share a common RON of 98, but vary in octane sensitivity and composition. To enable probing effects of near-zero NO levels, a skip-firing operating strategy is developed whereby the residual gases, which contain trace species like NO, are purged from the combustion chamber. Overall, the effects of NO-seeding on knock are consistent with the differences in knock limits for preand post-catalyst EGR gases.
Technical Paper

Effect of High RON Fuels on Engine Thermal Efficiency and Greenhouse Gas Emissions

2019-04-02
2019-01-0629
Historically, greenhouse gas (GHG) emissions standards for vehicles have focused on tailpipe emissions. However, sound environmental policy requires a more holistic well-to-wheels (WTW) assessment that includes both production of the fuel and its use in the vehicle. The present research explores the net change in WTW GHG emissions associated with moving from regular octane (RO) to high octane (HO) gasoline. It considers both potential increases in refinery emissions from producing HO fuel and potential reductions in vehicle emissions through the use of fuel-efficient engines optimized for such fuel. Three refinery configurations of varying complexity and reforming capacity were studied. A set of simulations covering different levels of HO gasoline production were run for each refinery configuration.
Journal Article

Using Chemical Kinetics to Understand Effects of Fuel Type and Compression Ratio on Knock-Mitigation Effectiveness of Various EGR Constituents

2019-04-02
2019-01-1140
Exhaust gas recirculation (EGR) can be used to mitigate knock in SI engines. However, experiments have shown that the effectiveness of various EGR constituents to suppress knock varies with fuel type and compression ratio (CR). To understand some of the underlying mechanisms by which fuel composition, octane sensitivity (S), and CR affect the knock-mitigation effectiveness of EGR constituents, the current paper presents results from a chemical-kinetics modeling study. The numerical study was conducted with CHEMKIN, imposing experimentally acquired pressure traces on a closed reactor model. Simulated conditions include combinations of three RON-98 (Research Octane Number) fuels with two octane sensitivities and distinctive compositions, three EGR diluents, and two CRs (12:1 and 10:1). The experimental results point to the important role of thermal stratification in the end-gas to smooth peak heat-release rate (HRR) and prevent acoustic noise.
Technical Paper

Effects of EGR Constituents and Fuel Composition on DISI Engine Knock: An Experimental and Modeling Study

2018-09-10
2018-01-1677
The use of exhaust gas recirculation (EGR) in spark ignition engines has been shown to have a number of beneficial effects under specific operating conditions. These include reducing pumping work under part load conditions, reducing NOx emissions and heat losses by lowering peak combustion temperatures, and by reducing the tendency for engine knock (caused by end-gas autoignition) under certain operating regimes. In this study, the effects of EGR addition on knocking combustion are investigated through a combined experimental and modeling approach. The problem is investigated by considering the effects of individual EGR constituents, such as CO2, N2, and H2O, on knock, both individually and combined, and with and without traces species, such as unburned hydrocarbons and NOx. The effects of engine compression ratio and fuel composition on the effectiveness of knock suppression with EGR addition were also investigated.
Technical Paper

Study of Ignition System for Demand Voltage Reduction

2015-04-14
2015-01-0777
Improving the engine efficiency to respond to climate change and energy security issues is strongly required. In order to improve the engine efficiency, lower fuel consumption, and enhance engine performance, OEMs have been developing high compression ratio engines and downsized turbocharged engines. However, higher compression ratio and turbocharging cause cylinder pressure to increase, which in turn increases the demand voltage for ignition. To reduce the demand voltage, a new ignition system is developed that uses a high voltage Zener diode to maintain a constant output voltage. Maintaining a constant voltage higher than the static breakdown voltage helps limit the amount of overshoot produced during the spark event. This allows discharge to occur at a lower demand voltage than with conventional spark ignition systems. The results show that the maximum reduction in demand voltage is 3.5 kV when the engine is operated at 2800 rpm and 2.6 MPa break mean effective pressure.
Journal Article

Pre-Ignition of Gasoline-Air Mixture Triggered by a Lubricant Oil Droplet

2014-10-13
2014-01-2627
This paper presents the effects of a lubricant oil droplet on the start of combustion of a fuel-air mixture. Lubricant oil is thought to be a major source of low-speed pre-ignition in highly boosted spark ignition engines. However, the phenomenon has not yet been fully understood because its unpredictability and the complexity of the mixture in the engine cylinder make analysis difficult. In this study, a single oil droplet in a combustion cylinder was considered as a means of simplifying the phenomenon. The conditions under which a single oil droplet ignites earlier than the fuel-air mixture were investigated. Tests were conducted by using a rapid compression expansion machine. A single oil droplet was introduced into the cylinder through an injector developed for this study. The ignition and the flame propagation were observed through an optical window, using a high-speed video camera.
X