Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Closed Track Testing To Assess Prototype Level-3 Autonomous Vehicle Readiness for Public Road Deployment

2024-04-09
2024-01-1976
Most of the Automated Driving Systems (ADS) technology development is targeting urban areas; there is still much to learn about how ADS will impact rural transportation. The DriveOhio team deployed level-3 ADS-equipped prototype vehicles in rural Ohio with the goal of discovering technical challenges for ADS deployment in such environments. However, before the deployment on public roads, it was essential to test the ADS-equipped vehicle for their safety limitations. At Transportation Research Center Inc. (TRC Inc.) proving grounds, we tested one such prototype system on a closed test track with soft targets and robotic platforms as surrogates for other road users. This paper presents an approach to safely conduct testing for ADS prototype and assess its readiness for public road deployment. The main goal of this testing was to identify a safe Operational Design Domain (ODD) of this system by gaining better understanding of the limitations of the system.
Technical Paper

Development of a Dynamic Nonlinear Finite Element Model of the Large Omnidirectional Child Crash Test Dummy

2024-04-09
2024-01-2509
The Large Omnidirectional Child (LODC) developed by the National Highway Traffic Safety Administration (NHTSA) has an improved biofidelity over the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD). The LODC design incorporates enhancements to many body region subassemblies, including a redesigned HIII-10C head with pediatric mass properties, and the neck, which produces head lag with Z-axis rotation at the atlanto-occipital joint, replicating the observations made from human specimens. The LODC also features a flexible thoracic spine, a multi-point thoracic deflection measurement system, skeletal anthropometry that simulates a child's sitting posture, and an abdomen that can measure belt loading directly. This study presents the development and validation of a dynamic nonlinear finite element model of the complete LODC dummy. Based on the three-dimensional CAD model, Hypermesh was used to generate a mesh of the finite element (FE) LODC model.
Technical Paper

Comparison of the Responses of the Thorax and Pelvis of the GHBMC M50 -O Using Two Different Foam Materials in a High-Speed Rear Facing Frontal Impact Scenario

2024-04-09
2024-01-2647
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam.
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Journal Article

Track, GoPro, and Prescan Testing of an ADAS Camera

2023-04-11
2023-01-0826
In order to validate the operation of advanced driver assistance systems (ADAS), tests must be performed that assess the performance of the system in response to different scenarios. Some of these systems are designed for crash-imminent situations, and safely testing them requires large stretches of controlled pavement, expensive surrogate targets, and a fully functional vehicle. As a possible more-manageable alternative to testing the full vehicle in these situations, this study sought to explore whether these systems could be isolated, and tests could be performed on a bench via a hardware-in-the-loop methodology. For camera systems, these benches are called Camera-in-the-Loop (CiL) systems and involve presenting visual stimuli to the device via an external input.
Technical Paper

Development and Calibration of the Large Omnidirectional Child ATD Head Finite Element Model

2021-04-06
2021-01-0922
To improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) Anthropomorphic Test Device (ATD), the National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) ATD. The LODC head is a redesigned HIII-10C head with mass properties and modified skin material required to match pediatric biomechanical impact response targets from the literature. A dynamic, nonlinear finite element (FE) model of the LODC head has been developed using the mesh generating tool Hypermesh based on the three-dimensional CAD model. The material data, contact definitions, and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The aluminum head skull is stiff relative to head flesh material and was thus modeled as a rigid material. For the actual LODC, the head flesh is form fit onto the skull and held in place through contact friction.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Heavy Vehicles Kinematics of Automatic Emergency Braking Test Track Scenarios

2020-04-14
2020-01-0995
This paper presents the test track scenario design and analysis used to estimate the performances of heavy vehicles equipped with forward collision warning and automatic emergency braking systems in rear-end crash scenarios. The first part of this design and analysis study was to develop parameters for brake inputs in test track scenarios simulating a driver that has insufficiently applied the brakes to avoid a rear-end collision. In the second part of this study, the deceleration limits imposed by heavy vehicles mechanics and brake systems are used to estimate automatic emergency braking performance benefits with respect to minimum stopping distance requirements set by Federal Motor Vehicle Safety Standards. The results of this study were used to complete the test track procedures and show that all heavy vehicles meeting regulatory stopping distance requirements have the braking capacity to demonstrate rear-end crash avoidance improvements in the developed tests.
Journal Article

NHTSA’s 2018 Heavy Vehicle Automatic Emergency Braking Test Track Research Results

2020-04-14
2020-01-1001
This paper presents National Highway Traffic Safety Administration’s 2017 and 2018 test track research results with heavy vehicles equipped with forward collision warning and automatic emergency braking systems. Newly developed objective test procedures were used to perform and collect performance data with three single-unit trucks equipped with the crash avoidance systems. The results of this research show that the test procedures are applicable to many heavy vehicles and indicate that performance improvements in heavy vehicles equipped with these safety systems can be objectively measured.
Journal Article

Analysis and Mathematical Modeling of Car-Following Behavior of Automated Vehicles for Safety Evaluation

2019-04-02
2019-01-0142
With the emergence of Driving Automation Systems (SAE levels 1-5), the necessity arises for methods of evaluating these systems. However, these systems are much more challenging to evaluate than traditional safety features (SAE level 0). This is because an understanding of the Driving Automation system’s response in all possible scenarios is desired, but prohibitive to comprehensively test. Hence, this paper attempts to evaluate one such system, by modeling its behavior. The model generated parameters not only allow for objective comparison between vehicles, but also provide a more complete understanding of the system. The model can also be used to extrapolate results by simulating other scenarios without the need for conducting more tests. In this paper, low speed automated driving (also known as Traffic Jam Assist (TJA)) is studied. This study focused on the longitudinal behavior of automated vehicles while following a lead vehicle (LV) in traffic jam scenarios.
Technical Paper

Biofidelity Evaluation of the THOR and Hybrid III 50th Percentile Male Frontal Impact Anthropomorphic Test Devices

2017-11-13
2017-22-0009
The objective of this study is to present a quantitative comparison of the biofidelity of the THOR and Hybrid III 50th percentile male ATDs. Quantitative biofidelity was assessed using NHTSA’s Biofidelity Ranking System in a total of 21 test conditions, including impacts to the head, face, neck, upper thorax, lower oblique thorax, upper abdomen, lower abdomen, femur, knee, lower leg, and whole-body sled tests to evaluate upper body kinematics and thoracic response under frontal and frontal oblique restraint loading. Biofidelity Ranking System scores for THOR were better (lower) than Hybrid III in 5 of 7 body regions for internal biofidelity and 6 of 7 body regions for external biofidelity. Nomenclature is presented to categorize the quantitative results, which show overall good internal and external biofidelity of the THOR compared to the good (internal) and marginal (external) biofidelity of the Hybrid III.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Journal Article

Hardware-in-the-Loop Pneumatic Braking System for Heavy Truck Testing of Advanced Electronic Safety Interventions

2016-04-05
2016-01-1648
The rapid innovation underway with vehicle brake safety systems leads to extensive evaluation and testing by system developers and regulatory agencies. The ability to evaluate complex heavy truck braking systems is potentially more rapid and economical through hardware-in-the-loop (HiL) simulation which employs the actual electronics and vehicle hardware. Though the initial HiL system development is time consuming and expensive, tests conducted on the completed system do not require track time, fuel, vehicle maintenance, or technician labor for driving or truck configuration changes. Truck and trailer configuration and loading as well as test scenarios can be rapidly adjusted within the vehicle dynamics simulation software to evaluate the performance of automated safety interventions (such as ESC) over a wide range of conditions.
Technical Paper

Scenario Regeneration using a Hardware-in-the-loop Simulation Platform to Study ABS and ESC Performance Benefits

2015-09-29
2015-01-2835
This study was performed to showcase the possible applications of the Hardware-in-the-loop (HIL) simulation environment developed by the National Highway Traffic Safety Administration (NHTSA), to test heavy truck crash avoidance safety systems. In this study, the HIL simulation environment was used to recreate a simulation of an actual accident scenario involving a single tractor semi-trailer combination. The scenario was then simulated with and without an antilock brake system (ABS) and electronic stability control (ESC) system to investigate the crash avoidance potential afforded by the tractor equipped with the safety systems. The crash scenario was interpreted as a path-following problem, and three possible driver intended paths were developed from the accident scene data.
Journal Article

Braking Behavior of Truck Drivers in Crash Imminent Scenarios

2014-09-30
2014-01-2380
Dynamic Brake Support (DBS) is a safety system that has been applied to various passenger cars and has been shown to be effective at assisting drivers in avoiding or mitigating rear-end collisions. The objective of a DBS system is to ensure that the brake system is applied quickly and at sufficient pressure when a driver responds to a collision imminent situation. DBS is capable of improving braking response due to a passenger car driver's tendency to utilize multi-stage braking. Interest is developing in using DBS on commercial vehicles. In order to evaluate the possible improvement in safety that could be realized through the use of DBS, driver braking behavior must first be analyzed to confirm that improvement is possible and necessary. To determine if this is the case, a study of the response of truck drivers' braking behavior in collision imminent situations is conducted. This paper presents the method of evaluation and results.
Technical Paper

Development of Brain Injury Criteria (BrIC)

2013-11-11
2013-22-0010
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
X