Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Trends in Driver Response to Forward Collision Warning and the Making of an Effective Alerting Strategy

2024-04-09
2024-01-2506
This paper compares the results from three human factors studies conducted in a motion-based simulator in 2008, 2014 and 2023, to highlight the trends in driver's response to Forward Collision Warning (FCW). The studies were motivated by the goal to develop an effective HMI (Human-Machine Interface) strategy that enables the required driver's response to FCW while minimizing the level of annoyance of the feature. All three studies evaluated driver response to a baseline-FCW and no-FCW conditions. Additionally, the 2023 study included two modified FCW chime variants: a softer FCW chime and a fading FCW chime. Sixteen (16) participants, balanced for gender and age, were tested for each group in all iterations of the studies. The participants drove in a high-fidelity simulator with a visual distraction task (number reading). After driving 15 minutes in a nighttime rural highway environment, a surprise forward collision threat arose during the distraction task.
Technical Paper

Model in the loop for training purpose

2022-02-04
2021-36-0014
The automotive industry is passing for a big transformation, due to technologies advance. The electrical technologies are also on a good rising curve, calling the attention of the Original Equipment Manufacturer (OEMs). This scenario generates the demand for a faster method to train their new hired engineers, when compared with usual on the job training. Model in the Loop (MiL) consists in one of the real-time embedded systems test phases, which is developed in a computational environment, performing a mathematical modeling of the system, presenting an interface that allows the visualization of its dynamics and the signals involved. Two powerful software in industry that apply MiL are the Matlab and Simulink. A project involving these applications was proposed for a team of new hired engineers, developing models of several vehicle Electronic Control Units (ECUs), with some scope reduction as an example the functional requirements reduction.
Technical Paper

Experimental Validation of Eco-Driving and Eco-Heating Strategies for Connected and Automated HEVs

2021-04-06
2021-01-0435
This paper presents experimental results that validate eco-driving and eco-heating strategies developed for connected and automated vehicles (CAVs). By exploiting vehicle-to-infrastructure (V2I) communications, traffic signal timing, and queue length estimations, optimized and smoothed speed profiles for the ego-vehicle are generated to reduce energy consumption. Next, the planned eco-trajectories are incorporated into a real-time predictive optimization framework that coordinates the cabin thermal load (in cold weather) with the speed preview, i.e., eco-heating. To enable eco-heating, the engine coolant (as the only heat source for cabin heating) and the cabin air are leveraged as two thermal energy storages. Our eco-heating strategy stores thermal energy in the engine coolant and cabin air while the vehicle is driving at high speeds, and releases the stored energy slowly during the vehicle stops for cabin heating without forcing the engine to idle to provide the heating source.
Technical Paper

Hardware-in-the-Loop, Traffic-in-the-Loop and Software-in-the-Loop Autonomous Vehicle Simulation for Mobility Studies

2020-04-14
2020-01-0704
This paper focuses on finding and analyzing the relevant parameters affecting traffic flow when autonomous vehicles are introduced for ride hailing applications and autonomous shuttles are introduced for circulator applications in geo-fenced urban areas. For this purpose, different scenarios have been created in traffic simulation software that model the different levels of autonomy, traffic density, routes, and other traffic elements. Similarly, software that specializes in vehicle dynamics, physical limitations, and vehicle control has been used to closely simulate realistic autonomous vehicle behavior under such scenarios. Different simulation tools for realistic autonomous vehicle simulation and traffic simulation have been merged together in this paper, creating a realistic simulator with Hardware-in-the-Loop (HiL), Traffic-in-the-Loop (TiL), and Software in-the-Loop (SiL) simulation capabilities.
Journal Article

Unified Power-Based Vehicle Fuel Consumption Model Covering a Range of Conditions

2020-04-14
2020-01-1278
Previously fuel consumption on a drive cycle has been shown to be proportional to traction work, with an offset for powertrain losses. This model had different transfer functions for different drive cycles, performance levels, and applied powertrain technologies. Following Soltic it is shown that if fuel usage and traction work are both expressed in terms of cycle average power, a wide range of drive cycles collapse to a single transfer function, where cycle average traction power captures the drive cycle and the vehicle size. If this transfer function is then normalized by weight, i.e. by working in cycle average power/weight (P/W), a linear model is obtained where the offset is mainly a function of rated performance and applied technology. A final normalization by rated power/weight as the primary performance metric further collapses the data to express the cycle average fuel power/rated power ratio as a function of cycle average traction power/rated power ratio.
Technical Paper

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

2019-07-08
2019-01-5074
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration.
Technical Paper

Duct Shape Optimization Using Multi-Objective and Geometrically Constrained Adjoint Solver

2019-04-02
2019-01-0823
In the recent years, adjoint optimization has gained popularity in the automotive industry with its growing applications. Since its inclusion in the mainstream commercial CFD solvers and its continuously added capabilities over the years, its productive usage became readily available to many engineers who were previously limited to interfacing the customized adjoint source code with CFD solvers. The purpose of this work is to demonstrate using an adjoint solver a method to optimize duct shape that meets multiple design objectives simultaneously. To overcome one of the biggest challenges in the duct design, i.e. the severe packaging constraints, the method here uses geometrically constrained adjoint to ensure that the optimum shape always fits into the user-defined packaging space. In this work, adjoint solver and surface sensitivity calculations are used to develop the optimization method.
Journal Article

Decoupling Vehicle Work from Powertrain Properties in Vehicle Fuel Consumption

2018-04-03
2018-01-0322
The fuel consumption of a vehicle is shown to be linearly proportional to (1) total vehicle work required to drive the cycle due to mass and acceleration, tire friction, and aerodynamic drag and (2) the powertrain (PT) mechanical losses, which are approximately proportional to the engine displaced volume per unit distance travelled (displacement time gearing). The fuel usage increases linearly with work and displacement over a wide range of applications, and the rate of increase is inversely proportional to the marginal efficiency of the engine. The theoretical basis for these predictions is reviewed. Examples from current applications are discussed, where a single PT is used across several vehicles. A full vehicle cycle simulation model also predicts a linear relationship between fuel consumption, vehicle work, and displacement time gearing and agrees well with the application data.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

A Packaging Layout to Mitigate Crosstalk for SiC Devices

2018-04-03
2018-01-0462
SiC devices have inherent fast switching capabilities due to their superior material properties, and are considered potential candidates to replace Si devices for traction inverters in electrified vehicles in future. However, due to the comparatively low gate threshold voltage, SiC devices may encounter oscillatory false triggering especially during fast switching. This paper analyzed the causes of false triggering, and also studied the impact of a critical parasitic parameter - common source inductance. It is shown that crosstalk is the main cause for the false triggering in the case and some positive common source inductance help to mitigate the crosstalk issue. A packaging layout method is proposed to create the positive common source inductance through layout of control terminals / busbars, and/or the use of control terminal bonded wires at different height.
Technical Paper

Using Machine Learning to Guide Simulations Over Unique Samples from Trip Profiles

2018-04-03
2018-01-1202
Electric vehicles are highly sensitive to variations in environmental factors (like temperature, drive style, grade, etc.). The distribution of real-world range of electric vehicles due to these environmental factors is an important consideration in target setting. This distribution can be obtained by running several simulations of an electric vehicle for a number of high-frequency velocity, grade, and temperature real-world trip profiles. However, in order to speed up simulation time, a unique set of drive profiles that represent the entire real-world data set needs to be developed. In this study, we consider 40,000 unique velocity and grade profiles from various real-world applications in EU. We generate metadata that describes these profiles using trip descriptor variables. Due to the large number of descriptor variables when considering second order effects, we normalize each descriptor and use principal component analysis to reduce the dimensions of our dataset to six components.
Technical Paper

Copper Effect on the Ultrasonic Fatigue Life of A356 Aluminum Alloy Under Variable Humidity Levels

2018-04-03
2018-01-1411
Ultrasonic fatigue tests (testing frequency around 20kHz) have been conducted on A356 aluminum alloys with different copper contents and AS7GU aluminum alloy. Tests were performed in dry air and submerged in water conditions. The effect of copper content was investigated and it was concluded that copper content plays an important role influencing the humidity effect on A356 aluminum alloy ultrasonic fatigue lives. Also, for the same copper content, copper in solute solution or in precipitate have different humidity sensitivities.
Technical Paper

The Effect of HVAC Buffeting on Automatic Speech Recognition Systems

2017-06-05
2017-01-1781
The design and operation of a vehicle’s heating, ventilation, and air conditioning (HVAC) system has great impact on the performance of the vehicle’s Automatic Speech Recognition (ASR) and Hands-Free Communication (HFC) system. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. But what’s less obvious is that when the airflow from the panel vents or defroster openings can be directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs on the microphone’s diaphragm that distresses the ASR system beyond its ability to interpret the user’s voice. The airflow velocity can be strong enough that a simple windscreen on the microphone is not enough to eliminate the problem. Minimizing this buffeting effect is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
Journal Article

The Impact of Microphone Location and Beamforming on In-Vehicle Speech Recognition

2017-03-28
2017-01-1692
This paper describes two case studies in which multiple microphone processing (beamforming) and microphone location were evaluated to determine their impact on improving embedded automatic speech recognition (ASR) in a vehicle hands-free environment. While each of these case studies was performed using slightly different evaluation set-ups, some specific and general conclusions can be drawn to help guide engineers in selecting the proper microphone location and configuration in a vehicle for the improvement of ASR. There were some outcomes that were common to both dual microphone solutions. When considering both solutions, neither was equally effective across all background noise sources. Both systems appear to be far more effective for noise conditions in which higher frequency energy is present, such as that due to high levels of wind noise and/or HVAC (heating, ventilation and air conditioning) blower noise.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Technical Paper

Safety Modeling of High Voltage Cabling in Electrified Powertrains

2017-03-28
2017-01-0361
Modeling of High Voltage (HV) wires is an important aspect of vehicle safety simulations for electrified powertrains to understand the potential tearing of the wire sheath or pinching of HV wiring. The behavior of the HV wires must be reviewed in safety simulations to identify potential hazards associated with HV wire being exposed, severed, or in contact with ground planes during a crash event. Modeling HV wire is challenging due to the complexity of the physical composition of the wire, which is usually comprised of multiple strands bundled and often twisted together to form the HV electrical conductor. This is further complicated by the existence of external insulating sheathing materials to prevent HV exposure during normal operating conditions. This paper describes a proposed method to model and characterize different types of HV wires for usage in component- and vehicle-level safety models.
Technical Paper

Augmented Reality for Improved Dealership User Experience

2017-03-28
2017-01-0278
The potential for Augmented Reality (AR) spans many domains. Among other applications, AR can improve the discovery and learning experience for users inspecting a particular item. This paper discusses the use of AR in the automotive context; particularly, on improving the user experience in a dealership show room. Visual augmentation, through a tablet computer or glasses allows users to take part in a self-guided tour in learning about the various features, details, and options associated with a vehicle. The same approach can be applied to other learning scenarios, such as training and maintenance assistance. We evaluated a set of AR Glasses and a general purpose tablet. A table-top showroom was developed demonstrating what the actual user experience would be like for a self-guided dealership tour using natural markers and three-dimensional content spatially registered to physical objects in the user’s field of view.
Technical Paper

Air Conditioning System Performance and Vehicle Fuel Economy Trade-Offs for a Hybrid Electric Vehicle

2017-03-28
2017-01-0171
In this paper, the tradeoff relationship between the Air Conditioning (A/C) system performance and vehicle fuel economy for a hybrid electric vehicle during the SC03 drive cycle is presented. First, an A/C system model was integrated into Ford’s HEV simulation environment. Then, a system-level sensitivity study was performed on a stand-alone A/C system simulator, by formulating a static optimization problem which minimizes the total energy use of actuators, and maintains an identical cooling capacity. Afterwards, a vehicle-level sensitivity study was conducted with all controllers incorporated in sensitivity analysis software, under three types of formulations of cooling capacity constraints. Finally, the common observation from both studies, that the compressor speed dominates the cooling capacity and the EDF fan has a marginal influence, is explained using the thermodynamics of a vapor compression cycle.
Technical Paper

Real-Time Implementation and Validation for Automated Path Following Lateral Control Using Hardware-in-the-Loop (HIL) Simulation

2017-03-28
2017-01-1683
Software for autonomous vehicles is highly complex and requires vast amount of vehicle testing to achieve a certain level of confidence in safety, quality and reliability. According to the RAND Corporation, a 100 vehicle fleet running 24 hours a day 365 days a year at a speed of 40 km/hr, would require 17 billion driven kilometers of testing and take 518 years to fully validate the software with 95% confidence such that its failure rate would be 20% better than the current human driver fatality rate [1]. In order to reduce cost and time to accelerate autonomous software development, Hardware-in-the-Loop (HIL) simulation is used to supplement vehicle testing. For autonomous vehicles, path following controls are an integral part for achieving lateral control. Combining the aforementioned concepts, this paper focuses on a real-time implementation of a path-following lateral controller, developed by Freund and Mayr [2].
Technical Paper

MyFord Dock Development

2017-03-28
2017-01-1694
Demand for enhanced infotainment systems with features like navigation, real-time traffic, music streaming service, mirroring and others is increasing, forcing automakers to develop solutions that fulfill customer needs. However, many of those systems are too expensive to be fitted to an entry-level vehicle leaving a gap in the market that fails customer’s expectation. This gap is usually filled by a smartphone which may have all the features the customer wants but in many cases it cannot be properly fitted in the vehicle due to lack of specific storage space. This paper describes how the engineering team developed an innovative, flexible and effective solution that holds a smartphone in an ergonomic location.
X