Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Soot and Gaseous Emissions Characterization of Butyl-Acetate/Diesel Blend in a Heavy-Duty Engine

2023-04-11
2023-01-0267
Significant effort has been put toward developing future-generation biofuels aimed at either spark-ignition or compression-ignition engines. Butyl-Acetate (BA), C6H12O2, is one such fuel that may be viable as a soot reduction drop-in blend candidate without significant impact on performance or efficiency. Though BA does have a low CN (≈ 20) and heating value (27 MJ/kg), it offers promise as a drop in blend-candidate with pump diesel due to its improved cold weather performance, high flash point, and potential for high volume renewable production capacity. This work investigated the impacts of 5% by volume blend of BA and standard pump diesel (DF2) on overall performance and with a particular focus on soot behavior. Tests were completed at 13 operating points spanning the operating map including full power. Results show a significant reduction in soot without significant impact on NOx emissions and minimal impact on thermal efficiency.
Journal Article

Strategies for Reduced Engine-Out HC, CO, and NOx Emissions in Diesel-Natural Gas and POMDME-Natural Gas Dual-Fuel Engine

2022-03-29
2022-01-0460
Dual-fuel engines employ precisely metered amounts of a high reactivity fuel (HRF) such as diesel at high injection pressures to burn a low reactivity fuel (LRF) such as natural gas, which is typically fumigated into the intake manifold. Dual fuel engines have demonstrated the ability to achieve extremely low engine-out oxides of nitrogen (NOx) emissions compared to conventional diesel combustion at the expense of unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. At low engine loads, due to low in-cylinder temperatures, oxidation of HC and CO is very challenging. This results in both compromised combustion and fuel conversion efficiencies.
Technical Paper

Simultaneous Control Optimization of Variable-Geometry Turbocharger and High Pressure EGR on a Medium Duty Diesel Engine

2021-09-21
2021-01-1178
This research examines the interdependence of the control strategies of a high-pressure exhaust gas recirculation (HP-EGR) and a variable geometry turbocharger (VGT) on a medium-duty diesel engine in transient load operation. The effect on fuel economy, particulate and NO production were investigated through multiple tests of synchronously controlled VGT and EGR positions. An optimal steady-state strategy of the above determinants was defined as a function of the VGT’s boost pressure and EGR percent mass. The optimal steady-state strategy was then used to investigate the interdependence of the VGT and HP-EGR in transient load acceptence events which occurred over a range of 2 to 10 seconds. The faster transients increased deviations of boost and EGR levels from steady-state calibration values which consequently led to corresponding fuel consumption and particulate matter emission increases.
Technical Paper

Mechanical Performance of Friction Stir Linear Welds of Al to Mg Alloys

2017-03-28
2017-01-0467
Lightweight metals such as Al and Mg alloys have been increasingly used for reducing mass in both structural and non-structural applications in transportation industries. Joining these lightweight materials using traditional fusion welding techniques is a critical challenge for achieving optimum mechanical performance, due to degradation of the constituent materials properties during the process. Friction stir welding (FSW), a solid-state joining technique, has emerged as a promising method for joining these lightweight materials. In particular, high joining efficiency has been achieved for FSW of various Al alloys and Mg alloys separately. Recent work on FSW of dissimilar lightweight materials also show encouraging results based on quasi-static shear performance. However, coach-peel performance of such joints has not been sufficiently examined.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

An Experimental Study of Diesel-Fuel Property Effects on Mixing-Controlled Combustion in a Heavy-Duty Optical CI Engine

2014-04-01
2014-01-1260
Natural luminosity (NL) and chemiluminescence (CL) imaging diagnostics are employed to investigate fuel-property effects on mixing-controlled combustion, using select research fuels-a #2 ultra-low sulfur emissions-certification diesel fuel (CF) and four of the Fuels for Advanced Combustion Engines (FACE) diesel fuels (F1, F2, F6, and F8)-that varied in cetane number (CN), distillation characteristics, and aromatic content. The experiments were performed in a single-cylinder heavy-duty optical compression-ignition (CI) engine at two injection pressures, three dilution levels, and constant start-of-combustion timing. If the experimental results are analyzed only in the context of the FACE fuel design parameters, CN had the largest effect on emissions and efficiency.
Technical Paper

Microstructure-Sensitive Fatigue Modeling of an Extruded AM30 Magnesium Alloy

2013-04-08
2013-01-0980
We characterize the cyclic behavior of an AM30 extruded magnesium alloy. The micromechanisms of cyclic damage were studied by means of strain controlled experiments in both the extruded and transverse directions. A scanning electron microscope (SEM) analysis of the microstructure revealed that second phase particles were present in the Mg alloy that nucleated the cracks. However, crack initiation sites were observed to occur due to profuse twinning. Low cycle fatigue parameters were determined, and a microstructure-sensitive MultiStage Fatigue (MSF) model, which is able to capture mechanical and microstructure properties, was implemented to predict fatigue behavior and failure.
Technical Paper

New Hydrophilic, Composite Membranes for Air Removal from Water Coolant Systems

2004-07-19
2004-01-2427
Liquid coolants are commonly used as thermal transport media to increase efficiency and flexibility in aerospace vehicle design. The introduction of gas bubbles into the coolant can have negative consequences, including: loss of centrifugal pump prime, irregular sensor readings, and blockage of coolant flow to remote systems. One solution to mitigate these problems is the development of a passive gas removal device, or gas trap, installed in the flight cooling system. In this study, a new hydrophilic, composite membrane has been developed for passage of the coolant fluid and retention of gas bubbles. The trapped bubbles are subsequently vented from the system by a thin, hydrophobic, microporous membrane. The original design for this work employed a homogeneous membrane that was susceptible to fouling and pore plugging.
Technical Paper

Planning Material Handling Vehicle Routes for Internal Just-In-Time Operations

1999-09-28
1999-01-3360
The problem of supplying JIT assembly workstations from a central depot with a goal of minimizing inventory and vehicle requirements is the focus of this paper. To minimize work-in-process inventory, the quantity of component parts delivered to each workstation must be just enough to satisfy production until the next delivery of components. To minimize vehicle requirements, there should be no vehicle idle time. The problem is modeled as a vehicle routing problem with a nonlinear capacity constraint. A heuristic solution procedure is outlined and a relaxed formulation is given to provide a lower bound on the number of vehicles required.
Technical Paper

Long-Term Performance of an Air-Conditioning System Based on Seasonal Aquifer Chill Energy Storage

1992-08-03
929049
A nominal 520 kW (thermal) air-conditioning system based on the seasonal storage of cold water in an aquifer has cooled a University of Alabama building since 1983. During cold weather, ambient, 18° C water is pumped from warm supply wells, chilled to about 6° C in a cooling tower, and reinjected into separate cold storage wells. In warm weather, water is withdrawn from the cold wells and pumped through building heat exchangers for air conditioning. Presented here are results of 6 years of study [sponsored by the U.S. Department of Energy through Pacific Northwest Laboratory] of the first successful U.S. application of this technology. This system yields high energy efficiency, with measured annual average COP of about 5 (SEER = 17 Btu/Wh), and energy recovery efficiency ranging from 40 to 85%, shifts utility loads from summer to winter, and no chlorofluorocarbon (CFC) release.
X