Refine Your Search

Topic

Search Results

Technical Paper

Multi-Variable Sensitivity Analysis and Ranking of Control Factors Impact in a Stoichiometric Micro-Pilot Natural Gas Engine at Medium Loads

2022-03-29
2022-01-0463
A diesel piloted natural gas engine's performance varies depending on operating conditions and has performed best under medium to high loads. It can often equal or better the fuel conversion efficiency of a diesel-only engine in this operating range. This paper presents a study performed on a multi-cylinder Cummins ISB 6.7L diesel engine converted to run stoichiometric natural gas/diesel micro-pilot combustion with a maximum diesel contribution of 10%. This study systematically quantifies and ranks the sensitivity of control factors on combustion and performance while operating at medium loads. The effects of combustion control parameters, including the pilot start of injection, pilot injection pressure, pilot injection quantity, exhaust gas recirculation, and global equivalence ratio, were tested using a design of experiments orthogonal matrix approach.
Technical Paper

Hybrid Physical and Machine Learning-Oriented Modeling Approach to Predict Emissions in a Diesel Compression Ignition Engine

2021-04-06
2021-01-0496
The development and calibration of modern combustion engines is challenging in the area of continuously tightening emission limits and the necessity for meeting real driving emissions regulations. A focus is on the knowledge of the internal engine processes and the determination of pollutants formations in order to predict the engine emissions. A physical model-based development provides an insight into hardly measurable phenomena properties and is robust against changing input data. With increasing modeling depth the required computing capacities increase. As an alternative to physical modeling, data-driven machine learning methods can be used to enable high-performance modeling accuracy. However, these are dependent on the learned data. To combine the performance and robustness of both types of modeling a hybrid application of data-driven and physical models is developed in this paper as a grey box model for the exhaust emission prediction of a commercial vehicle diesel engine.
Technical Paper

Response Characteristics of an Amperometric NOx-O2 Sensor at Non diffusion-Rate-Determining Conditions

2021-04-06
2021-01-0678
Experimental results are combined with a physical understanding of an amperometric NOx-O2 sensor to study the effect of three main operating parameters on the sensor behavior in non diffusion-rate-determining operating conditions. The sensor response to NOx concentration is examined over a range of sensor operating temperatures, reference cell potentials, and second sensing cell potentials. The results show that the sensor sensitivity increases gradually with the sensing cell voltage while the sensor output is almost linearly dependent on NOx concentration for cell voltages higher than ≈ 0.25 V. The results also reveal that reducing the reference cell potential from the typical cell potential (0.42 V) reduces the sensor cross-sensitivity to O2 particularly at high NOx concentrations (>600 [ppm]).
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Effect of Engine-Out Soot Emissions and the Frequency of Regeneration on Gasoline Particulate Filter Efficiency

2020-04-14
2020-01-1431
Gasoline particulate filters (GPFs) are an important aftertreatment system that enables gasoline direct injection (GDI) engines to meet current emission standardsn note of GPFs may need to improonont accumulates on the GPF during engine operation. GPFs are often ‘pa during vehicle operation when the exhaust is sufficiently hot and it contains sufficient oxygen. This paper explores the effect that engine-out soot emissions and the frequency of GPF regeneration have on GPF filtration efficiency. Two GPF technologies were tested on two engine dynamometers as well as two production vehicles on a chassis dynamometer. The engines span a wide range of engine-out particle emissions (a range of almost one order of magnitude). The filtration efficiency of the GPFs were measured with a regulation-compliant particle number system (non-volatile particles > 23 nm), as well as with a particle counter with a lower cutoff of 2.5 nm, and with a differential mobility spectrometer.
Technical Paper

Extending the Load Range of a Natural Gas HCCI Engine using Direct Injected Pilot Charge and External EGR

2009-06-15
2009-01-1884
Natural gas is a challenging fuel for HCCI engines because its single-stage ignition and rapid combustion make it difficult to optimize combustion timing over a significant load range. This study investigates direct injection of a pilot quantity of high-cetane fuel near TDC as a range extension and combustion control mechanism for natural gas HCCI engines. The EGR and load range is studied in a supercharged natural gas HCCI engine equipped with external EGR, intake heating and a direct injection system for n-heptane pilot fuel. The operating range and emissions are of primary interest and are compared between both the baseline HCCI engine with variable intake temperature and the direct injected HCCI (DI-HCCI) engine with constant intake temperature. Test results show the EGR and load range at fixed intake temperature can be extended using pilot direct injection.
Journal Article

Oxygenated Fuel Considerations for In-Shop Fuel System Leak Testing Hazards

2008-04-14
2008-01-0554
Because of domestic production from renewable sources and their clean burning nature, alcohols, especially ethanol, have seen growing use as a blending agent and replacement for basic hydrocarbons in gasoline. The increasing use of alcohol in fuels raises questions on the safety of these fuels under certain non-operational situations. Modern vehicles use evaporative emission control systems to minimize environmental emissions of fuel. These systems must be relatively leak-free to function properly and are self-diagnosed by the vehicle On-Board Diagnostic system. When service is required, the service leak testing procedures may involve forcing test gases into the “evap” system and also exposure of the fuel vapors normally contained in the system to atmosphere. Previous work has discussed the hazards involved when performing shop leak testing activities for vehicles fuelled with conventional hydrocarbon gasoline [1, 2].
Technical Paper

Reformer Gas Composition Effect on HCCI Combustion of n-Heptane, iso-Octane, and Natural Gas

2008-04-14
2008-01-0049
Although HCCI engines promise low NOx emissions with high efficiency, they suffer from a narrow operating range between knock and misfire because they lack a direct means of controlling combustion timing. A series of previous studies showed that reformer gas, (RG, defined as a mixture of light gases dominated by hydrogen and carbon monoxide), can be used to control combustion timing without changing mixture dilution, (λ or EGR) which control engine load. The effect of RG blending on combustion timing was found to be mainly related to the difference in auto-ignition characteristics between the RG and base fuel. The practical effectiveness of RG depends on local production using a fuel processor that consumes the same base fuel as the engine and efficiently produces high-hydrogen RG as a blending additive.
Technical Paper

Effect of Reformer Gas on HCCI Combustion - Part II: Low Octane Fuels

2007-04-16
2007-01-0206
Homogeneous Charge Compression Ignition (HCCI) combustion offers high fuel efficiency and some emissions benefits. However, it is difficult to control and stabilize combustion over a significant operating range because the critical compression ratio and intake temperature at which HCCI combustion can be achieved vary with operating conditions such as speed and load as well as with fuel octane number. Replacing part of the base fuel with reformer gas, (which can be produced from the base hydrocarbon fuel), alters HCCI combustion characteristics in varying ways depending on the replacement fraction and the base fuel auto-ignition characteristics. Because fuel injection quantities and ratios can be altered on a cycle-by-cycle basis during operation, injecting a variable blend of reformer gas and base fuel offers a potential HCCI combustion control mechanism.
Technical Paper

Fuel Tank and Charcoal Canister Fire Hazards during EVAP System Leak Testing

2007-04-16
2007-01-1235
The combination of on-board diagnostics and evaporative emission control (EVAP) systems has led to a growing need to identify and repair leaks in automotive EVAP systems. The normal leakfinding method involves purging the system with a smoke fluid, usually air or nitrogen containing an oil aerosol and then looking for a visual indication of the leak. The purge flow used to distribute smoke through the system displaces substantial amounts of fuel vapor from the tank vapor space and can also raise the oxygen level inside the fuel system. If any ignition source is present, the formation of flammable mixtures both inside and outside the vehicle systems can lead to a flash fire hazard associated with leak finding procedures. Currently available fire statistics (such as NFPA) are not sufficiently detailed to attribute service shop fires to specific testing procedures.
Technical Paper

Emission Factors Analysis for Multiple Vehicles Using an On-Board, In-Use Emissions Measurement System

2007-04-16
2007-01-1327
Despite progressive implementation of stringent emission regulations, vehicle tailpipe emissions remain the major source of air pollution problems in most urban areas. To control and reduce tailpipe pollutants, it is critical to understand in-use emissions as a basis for any future emission controls. At present, emission factors are mainly studied by chassis dynamometer methods. However, concerns have been raised about the extent to which emissions produced by on-road vehicles can be predicted using emission factors developed based on standardized dynamometer test procedures. This paper describes an on-board, in-use vehicle emissions measurement system which measures tailpipe emission rates while the vehicle is in real service experiencing complex traffic conditions, driver behavior and weather.
Technical Paper

Experimental Measurement of On-Road CO2 Emission and Fuel Consumption Functions

2007-04-16
2007-01-1610
Motorized transport has become an essential part of our world economic system with an ever-increasing number of vehicles on the road. However, considering the depletion of energy resources and the aggravation of greenhouse gas issues, it is critical to improve vehicle fuel consumption. These demands are moving us toward advanced engine and powertrain technologies. However, understanding our progress also requires improvements in the way we measure and certify vehicle emissions and fuel economy performance. This paper describes the use of an on-board fuel consumption and emissions measurement system to develop on-road fuel consumption functions that can be used to quantify the fuel economy impact of vehicle, road and traffic control changes. The system uses an ECM OBD-II scanner, a Mass Air Flow meter and an emissions analyzer to monitor fuel consumption and exhaust CO2 emission rates (in g/s) as well as vehicle speed and other parameters.
Technical Paper

Effect of Biodiesel Fuel Properties and Its Blends on Atomization

2006-04-03
2006-01-0893
Biodiesels are promising alternatives to diesel fuel since they are biodegradable, non-toxic and reduce air pollution. This study presents analytical comparisons of atomization characteristics of 3 types of biodiesels and 6 blends with Diesel No. 2. Results showed that the smallest and largest drop sizes were associated with coconut and peanut biodiesel blends, respectively. Using unblended biodiesels increases drop size by 40%, which indicates either custom nozzles should be used in such applications or blending is required to reduce surface tension and viscosity to enhance atomization. Knowledge of atomization of pure biodiesel and its blends as alternative fuels in diesel engines can lead to better design of diesel engine injectors to meet regulatory emission guidelines and engine performance.
Technical Paper

Quantifying Vehicle Emission Factors for Various Ambient Conditions using an On-Road, Real-Time Emissions System

2003-03-03
2003-01-0301
This paper demonstrates vehicle emission factor measurement using an on-board, on-road system and examines the effects of ambient temperature on those emission factors. Vehicle operating parameters, fuel consumption and emissions were measured on-road using a portable measurement system designed for ease of use with a range of vehicles, drivers and driving situations. The results reported here come from repeated trips over a 17.4 km urban / suburban route with a particular driver and vehicle. As such, the emission factors developed here do not represent the current on-road fleet. However, they show the strong influence of actual operating conditions (particularly ambient temperature) and of the vehicle control system's response to non-standard conditions. This leads to an appreciation for on-road testing as a means to illustrate vehicle emission behavior in real conditions and to highlight conditions which may require more detailed study.
Technical Paper

The University of Alberta Four-Stroke Ski-Doo MXZ-X Conversion

2002-10-21
2002-01-2760
The University of Alberta Clean Snowmobile Challenge Team used a modified 2000 Bombardier Ski-Doo MXZ-X for the 2002 Clean Snowmobile Challenge (CSC). A Suzuki GSX-R 600 engine with a custom tuned port fuel injection system and custom exhaust system weree installed to maximize power while reducing emissions and noise from the snowmobile. This design was intended to meet the objectives of the CSC2002 competition which were a 50% reduction in hydrocarbon and carbon monoxide emissions and a reduction in noise to 74 dBA at 15 m (50 ft.) and wide open throttle (WOT). The reduction in emissions was easily achieved through the use of a four stroke engine with fuel injection and exhaust catalyst. The team was unable to meet the noise reduction goal although the entry was significantly quieter than the stock control snowmobile.
Technical Paper

Real-Time, On-Road Measurement of Driving Behavior, Engine Parameters and Exhaust Emissions

2002-05-06
2002-01-1714
Automotive tailpipe emissions are a significant contribution to urban air quality problems.(1) However, it is difficult to quantify the extent of that contribution and to quantify any progress in solving the problem. Emissions inventories are commonly based on vehicle registrations, assumed mileage and a set of emission factors. The emission factors are based on dynamometer testing of selected vehicles undertightly controlled conditions. Actual vehicle operation in any urban area encompasses a wider range of vehicles, operating conditions and ambient conditions. Given the highly tuned nature of current engine management systems, the actual in-use emissions levels can be highly sensitive to non-standard ambient and operating situations.(2,3,4,5) This paper describes an on-board system used to record ambient conditions, driving behavior, vehicle operating parameters, fuel consumption and exhaust emissions.
Technical Paper

Tailpipe Emissions Comparison Between Propane and Natural Gas Forklifts

2000-06-19
2000-01-1865
It is commonly stated that natural gas-fueled forklifts produce less emissions than propane-fueled forklifts. However, there is relatively little proof. This paper reports on a detailed comparative study at one plant in Edmonton, Canada where a fleet of forklift trucks is used for indoor material movement. (For convenience, the acronym NGV, ie. Natural Gas Vehicle is used to designate natural gas-fueled and LPG, ie. Liquified Petroleum Gas, is used to designate propane-fueled forklifts). Until recently the forklift trucks (of various ages) were LPG carburetted units with two-way catalytic converters. Prompted partially by worker health concerns, the forklifts were converted to fuel injected, closed-loop controlled NGV systems with three-way catalytic converters. The NGV-converted forklifts reduced emissions by 77% (NOX) and 76% (CO) when compared to just-tuned LPG forklifts.
Technical Paper

Emissions Effects of Alternative Fuels in Light-Duty and Heavy-Duty Vehicles

2000-03-06
2000-01-0692
Energy supply and environmental concerns have led to interest in alternative transportation fuels and power-trains. Already, there are significant changes in mainstream gasoline and Diesel formulation to accommodate tighter emissions standards. Some alternative fuels are being promoted as “cleaner” replacements for gasoline and Diesel fuel. There are many research papers which present data on these different alternative fuels, yet it is difficult to compare the fuels with any confidence. The majority of published studies do not use consistent methodology and make many assumptions (which may or may not be reported). Based on an extensive literature review, this study presents emissions results drawn from a smaller number of papers which provide alternative fuel and conventional emissions data in a comparable manner. Both light-duty and heavy-duty vehicles are considered.
Technical Paper

Experimental and Modelling Study of Variable Cycle Time for a Reversing Flow Catalytic Converter for Natural Gas/Diesel Dual Fuel Engines

2000-03-06
2000-01-0213
This paper presents an investigation of a reverse flow catalytic converter attached to a diesel/natural gas dual fuel engine. Experimental data were obtained in a ceramic monolith catalytic converter with a palladium based catalyst. A variety of flow reversal cycle times were explored experimentally when the engine load was changed from a high load to a low load. A single channel numerical model was developed for the data set and the effect of reverse flow cycle time was studied using both physical and numerical model systems. The duration of the cycle time is shown to be an important parameter in the operation of the converter. Shorter cycle times produced the least fluctuation in reactor temperature and gave the highest time-averaged conversion. Intermediate cycle times gave the most rapid increase in the maximum reactor temperature.
Technical Paper

A Case Study for Life Cycle Assessment (LCA) as an Energy Decision Making Tool: The Production of Fuel Ethanol from Various Feedstocks

1998-11-30
982205
Life Cycle Analysis (LCA) considers the key environmental impacts for the entire life cycle of alternative products or processes in order to select the best alternative. An ideal LCA would be an expensive and time consuming process because any product or process typically involves many interacting systems and a considerable amount of data must be analysed for each system. Practical LCA methods approximate the results of an ideal analysis by setting limited analysis boundaries and by accepting some uncertainty in the data values for the systems considered. However, there is no consensus in the LCA field on the correct method of selecting boundaries or on the treatment of data set uncertainty. This paper demonstrates a new method of selecting system boundaries for LCA studies and presents a brief discussion on applying Monte Carlo Analysis to treat the uncertainty questions in LCA.
X