Refine Your Search

Topic

Search Results

Technical Paper

Freevalve: Control and Optimization of Fully Variable Valvetrain-Enabled Combustion Strategies for High Performance Engines

2022-08-30
2022-01-1066
With ever stricter legislative requirements for CO2 and other exhaust emissions, significant efforts by OEMs have launched a number of different technological strategies to meet these challenges such as Battery Electric Vehicles (BEVs). However, a multiple technology approach is needed to deliver a broad portfolio of products as battery costs and supply constraints are considerable concerns hindering mass uptake of BEVs. Therefore, further investment in Internal Combustion (IC) engine technologies to meet these targets are being considered, such as lean burn gasoline technologies alongside other high efficiency concepts such as dedicated hybrid engines. Hence, it becomes of sound reason to further embrace diversity and develop complementary technologies to assist in the transition to the next generation hybrid powertrain. One such approach is to provide increased valvetrain flexibility to afford new degrees of freedom in engine operating strategies.
Technical Paper

Testing of a Modern Wankel Rotary Engine - Part II: Motoring Analysis

2022-03-29
2022-01-0592
The present work represents the continuation of the introductory study presented in part I [11] where the experimental plan, the measurement system and the tools developed for the testing of a modern Wankel engine were illustrated. In this paper the motored data coming from the subsequent stage of the testing are presented. The AIE 225CS Wankel rotary engine produced by Advanced Innovative Engineering UK, installed in the test cell of the University of Bath and equipped with pressure transducers selected for the particular application, has been preliminarily tested under motored conditions in order to validate the data acquisition software on the real application and the correct determination of the Top Dead Centre (TDC) location which is of foremost importance in the computation of parameters such as the indicated work and the combustion heat release when the engine is tested later under fired conditions.
Technical Paper

Analysis of a Supercharged Gas Turbine Engine Concept and Preliminary Investigation of a Version Using Argon as the Working Fluid

2022-03-29
2022-01-0595
The paper presents results from a study into the potential of a complex cycle gas turbine engine, originally investigated by the Ford Motor Company for truck applications in the 1960s, and updated to gauge the possible improvements by raising the efficiencies of its constituent components from the values used in period to more modern levels. To perform this investigation, firstly a spreadsheet model was constructed and the data that Ford made available in the open literature were used to validate it. The methodology used in the model was to balance the power consumed by the compressors (and the auxiliaries where applicable) with that produced by their driving turbines, and to match the thermal power in the heat exchangers with the data provided. Using the quoted lower heating value of the diesel fuel originally used, this approach led to an accuracy in the match of brake specific fuel consumption (in terms of g/kWh) to three places of decimals.
Technical Paper

Investigations into Steady-State and Stop-Start Emissions in a Wankel Rotary Engine with a Novel Rotor Cooling Arrangement

2021-09-05
2021-24-0097
The present work investigates a means of controlling engine hydrocarbon startup and shutdown emissions in a Wankel engine which uses a novel rotor cooling method. Mechanically the engine employs a self-pressurizing air-cooled rotor system (SPARCS) configured to provide improved cooling versus a simple air-cooled rotor arrangement. The novelty of the SPARCS system is that it uses the fact that blowby past the sealing grid is inevitable in a Wankel engine as a means of increasing the density of the medium used for cooling the rotor. Unfortunately, the design also means that when the engine is shutdown, due to the overpressure within the engine core and the fact that fuel vapour and lubricating oil are to be found within it, unburned hydrocarbons can leak into the combustion chambers, and thence to the atmosphere via either or both of the intake and exhaust ports.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

Mass Benefit Analysis of 4-Stroke and Wankel Range Extenders in an Electric Vehicle over a Defined Drive Cycle with Respect to Vehicle Range and Fuel Consumption

2019-04-02
2019-01-1282
The gradual push towards electric vehicles (EV) as a primary mode of transport has resulted in an increased focus on electric and hybrid powertrain research. One answer to the consumers’ concern over EV range is the implementation of small combustion engines as generators to supplement the energy stored in the vehicle battery. Since these range extender generators have the opportunity to run in a small operating window, some engine types that have historically struggled in an automotive setting have the potential to be competitive. The relative merits of two different engine options for range extended electric vehicles are simulated in vehicle across the WLTP drive cycle. The baseline electric vehicle chosen was the BMW i3 owing to its availability as an EV with and without a range extender gasoline engine.
Technical Paper

2-Stroke Engine Options for Automotive Use: A Fundamental Comparison of Different Potential Scavenging Arrangements for Medium-Duty Truck Applications

2019-01-15
2019-01-0071
The work presented here seeks to compare different means of providing scavenging systems for an automotive 2-stroke engine. It follows on from previous work solely investigating uniflow scavenging systems, and aims to provide context for the results discovered there as well as to assess the benefits of a new scavenging system: the reverse-uniflow sleeve-valve. For the study the general performance of the engine was taken to be suitable to power a medium-duty truck, and all of the concepts discussed here were compared in terms of indicated fuel consumption for the same cylinder swept volume using a one-dimensional engine simulation package. In order to investigate the sleeve-valve designs layout drawings and analysis of the Rolls-Royce Crecy-type sleeve had to be undertaken.
Technical Paper

Octane Response of a Highly Boosted Direct Injection Spark Ignition Engine at Different Compression Ratios

2018-04-03
2018-01-0269
Stringent regulations on fuel economy have driven major innovative changes in the internal combustion engine design. (E.g. CAFE fuel economy standards of 54.5 mpg by 2025 in the U.S) Vehicle manufacturers have implemented engine infrastructure changes such as downsizing, direct injection, higher compression ratios and turbo-charging/super-charging to achieve higher engine efficiencies. Fuel properties therefore, have to align with these engine changes in order to fully exploit the possible benefits. Fuel octane number is a key metric that enables high fuel efficiency in an engine. Greater resistance to auto-ignition (knock) of the fuel/air mixture allows engines to be operated at a higher compression ratio for a given quantity of intake charge without severely retarding the spark timing resulting in a greater torque per mass of fuel burnt. This attribute makes a high octane fuel a favorable hydrocarbon choice for modern high efficiency engines that aim for higher fuel economy.
Technical Paper

Influence of Coolant Temperature and Flow Rate, and Air Flow on Knock Performance of a Downsized, Highly Boosted, Direct-Injection Spark Ignition Engine

2017-03-28
2017-01-0664
The causes of engine knock are well understood but it is important to be able to relate these causes to the effects of controllable engine parameters. This study attempts to quantify the effects of a portion of the available engine parameters on the knock behavior of a 60% downsized, DISI engine running at approximately 23 bar BMEP. The engines response to three levels of coolant flow rate, coolant temperature and exhaust back pressure were investigated independently. Within the tested ranges, very little change in the knock limited spark advance (KLSA) was observed. The effects of valve timing on scavenge flow and blow through (the flow of fresh air straight into the exhaust system during the valve overlap period) were investigated at two conditions; at fixed inlet/exhaust manifold pressures, and at fixed engine torque. For both conditions, a matrix of 8 intake/exhaust cam combinations was tested, resulting in a wide range of valve overlap conditions (from 37 to -53°CA).
Journal Article

Analysis of a Diesel Passenger Car Behavior On-Road and over Certification Duty Cycles

2016-10-17
2016-01-2328
Precise, repeatable and representative testing is a key tool for developing and demonstrating automotive fuel and lubricant products. This paper reports on the first findings of a project that aims to determine the requirements for highly repeatable test methods to measure very small differences in fuel economy and powertrain performance. This will be underpinned by identifying and quantifying the variations inherent to this specific test vehicle, both on-road and on Chassis Dynamometer (CD), that create a barrier to improved testing methods. In this initial work, a comparison was made between on-road driving, the New European Drive Cycle (NEDC) and World harmonized Light-duty Test Cycle (WLTC) cycles to understand the behavior of various vehicle systems along with the discrepancies that can arise owing to the particular conditions of the standard test cycles.
Technical Paper

Study on the Effects of EGR Supply Configuration on Cylinder-to-Cylinder Dispersion and Engine Performance Using 1D-3D Co-Simulation

2015-11-17
2015-32-0816
Exhaust Gas Recirculation (EGR) is widely used in IC combustion engines for diluting air intake charge and controlling NOx emission. The rate of EGR required by an engine varies by the speed and load and control of the right amount entering the cylinders is crucial to ensure good engine performance and low NOx emission. However, controlling the amount of EGR entering the intake manifold does not ensure that EGR rate will be evenly distributed among the engine's cylinders. This can many times lead to cylinders operating at very high or low EGR rates which contradictory can deteriorate particulate matter and NOx emission. The present study analyses the cylinder-to-cylinder EGR dispersion of a 4 cylinder 2.2L EUROV Diesel engine and its effects on the combustion stability. A 1D-3D coupling simulation is performed using GT-Power and STAR-CCM+ to analyze the effects of intake manifold geometry and EGR supply configuration on the EGR homogeneity and cylinder-to-cylinder distribution.
Technical Paper

Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems

2015-09-06
2015-24-2523
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of improving torque and pedal response of small displacement engines. In two stage sequential systems, high pressure (HP) and low pressure (LP) turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. The former is able to deliver elevated pressure ratios, but it is not able to highly compressor low flow rates of air. The latter turbo-machine can increase charge pressure at lower mass air flow and be by-passed at high rates of air flow.
Technical Paper

Explore and Extend the Effectiveness of Turbo-compounding in a 2.0 litres Gasoline Engine

2015-04-14
2015-01-1279
After years of study and improvement, turbochargers in passenger cars now generally have very high efficiency. This is advantageous, but on the other hand, due to their high efficiency, only a small portion of the exhaust energy is needed for compressing the intake air, which means further utilization of waste heat is restricted. From this point of view, a turbo-compounding arrangement has significant advantage over a turbocharger in converting exhaust energy as it is immune to the upper power demand limit of the compressor. However, with the power turbine being located in series with the main turbine, power losses are incurred due to the higher back pressure which increases the pumping losses. This paper evaluates the effectiveness that the turbo-compounding arrangement has on a 2.0 litres gasoline engine and seeks to draw a conclusion on whether the produced power is sufficient to offset the increased pumping work.
Technical Paper

Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing

2015-04-14
2015-01-0505
Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
Journal Article

Octane Appetite: The Relevance of a Lower Limit to the MON Specification in a Downsized, Highly Boosted DISI Engine

2014-10-13
2014-01-2718
Market demand for high performance gasoline vehicles and increasingly strict government emissions regulations are driving the development of highly downsized, boosted direct injection engines. The in-cylinder temperatures and pressures of these emerging technologies tend to no longer adhere to the test conditions defining the RON and MON octane rating scales. This divergence between fuel knock rating methods and fuel performance in modern engines has previously led to the development of an engine and operating condition dependent scaling factor, K, which allows for extrapolation of RON and MON values. Downsized, boosted DISI engines have been generally shown to have negative K-values when knock limited, indicating a preference for fuels of higher sensitivity and challenging the relevance of a lower limit to the MON specification.
Technical Paper

Simulation Study of Divided Exhaust Period for a Regulated Two-stage Downsized SI Engine

2014-10-13
2014-01-2550
The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine.
Technical Paper

A New Turboexpansion Concept in a Twin-Charged Engine System

2014-10-13
2014-01-2596
Engines equipped with pressure charging systems are more prone to knock partly due the increased intake temperature. Meanwhile, turbocharged engines when operating at high engine speeds and loads cannot fully utilize the exhaust energy as the wastegate is opened to prevent overboost. The turboexpansion concept thus is conceived to reduce the intake temperature by utilizing some otherwise unexploited exhaust energy. This concept can be applied to any turbocharged engines equipped with both a compressor and a turbine-like expander on the intake loop. The turbocharging system is designed to achieve maximum utilization of the exhaust energy, from which the intake charge is over-boosted. After the intercooler, the turbine-like expander expands the over-compressed intake charge to the required plenum pressure and reduces its temperature whilst recovering some energy through the connection to the crankshaft.
Technical Paper

Turbocharger Dynamic Performance Prediction by Volterra Series Model

2014-10-13
2014-01-2558
Current turbocharger models are based on characteristic maps derived from experimental measurements taken under steady conditions on dedicated gas stand facility. Under these conditions heat transfer is ignored and consequently the predictive performances of the models are compromised, particularly under the part load and dynamic operating conditions that are representative of real powertrain operations. This paper proposes to apply a dynamic mathematical model that uses a polynomial structure, the Volterra Series, for the modelling of the turbocharger system. The model is calculated directly from measured performance data using an extended least squares regression. In this way, both compressor and turbine are modelled together based on data from dynamic experiments rather than steady flow data from a gas stand. The modelling approach has been applied to dynamic data taken from a physics based model, acting as a virtual test cell.
Technical Paper

Empirical Lumped-mass Approach to Modelling Heat Transfer in Automotive Turbochargers

2014-10-13
2014-01-2559
When evaluating the performance of new boosting hardware, it is a challenge to isolate the heat transfer effects inherent within measured turbine and compressor efficiencies. This work documents the construction of a lumped mass turbocharger model in the MatLab Simulink environment capable of predicting turbine and compressor metal and gas outlet temperatures based on measured or simulated inlet conditions. A production turbocharger from a representative 2.2L common rail diesel engine was instrumented to enable accurate gas and wall temperature measurements to be recorded under a variety of engine operating conditions. Initially steady-state testing was undertaken across the engine speed and load range in order that empirical Reynolds-Nusselt heat transfer relationships could be derived and incorporated into the model. Steady state model predictions were validated against further experimental data.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
X