Refine Your Search

Topic

Search Results

Technical Paper

Performance Assessment of a Model-Based Combustion Control System to Decrease the Brake Specific Fuel Consumption

2023-08-28
2023-24-0027
The challenge of industrial carbon footprint reduction is led by the engine manufacturers that are developing new technologies and fuels to lower CO2 emissions. Although the deployment of relevant investments for the development of battery electric vehicles, diesel, and gasoline cars are still widely used, especially for their longer operating range, faster refueling, and lower cost. For this reason, more efficient traditional internal combustion engines can guide the transition towards new propulsion systems. In this document, the innovative piston damage and exhaust gas temperature models previously developed by the authors are reversed and coupled to manage the combustion process, increasing the overall energy conversion efficiency. The instantaneous piston erosion and the exhaust gas temperature at the turbine inlet are evaluated according to the models’ estimation which manages both the spark advance, and the target lambda.
Technical Paper

Comparison of Modern Powertrains Using an Energy Model Based on Well-to-Miles Analysis

2023-08-28
2023-24-0005
The need to reduce carbon dioxide emissions from motor vehicles pushes the European Union towards drastic choices on future mobility. Despite this, the engines of the “future” have not yet been defined: the choice of engine type will undoubtedly depend on the type of application (journey length, availability of recharging/refueling facilities), practical availability of alternative fuels, and electricity to recharge the batteries. The electrification of vehicles (passenger and transportation cars) may be unsuitable for several aspects: the gravimetric energy density could be too low if the vehicle has to be lightweight, must achieve a high degree of autonomy, or needs a very short refueling time.
Technical Paper

Performance Assessment of Gasoline PPC in a Light-Duty CI Engine

2022-03-29
2022-01-0456
In the past years, stringent emission regulations for Internal Combustion (IC) engines produced a large amount of research aimed at the development of innovative combustion methodologies suitable to simultaneously reduce fuel consumption and engine-out emissions. Previous research demonstrates that the goal can be obtained through the so-called Low Temperature Combustions (LTC), which combine the benefits of compression-ignited engines, such as high compression ratio and unthrottled lean operation, with a properly premixed air-fuel mixture, usually obtained injecting gasoline-like fuels with high volatility and longer ignition delay. Gasoline Partially Premixed Combustion (PPC) is a promising LTC technique, mainly characterized by the high-pressure direct-injection of gasoline and the spontaneous ignition of the premixed air-fuel mixture through compression, which showed a good potential for the simultaneous reduction of fuel consumption and emissions in CI engines.
Technical Paper

Thermal Efficiency Enhancement for Future Rightsized Boosted GDI Engines - Effectiveness of the Operation Point Strategies Depending on the Engine Type

2021-09-05
2021-24-0009
Internal combustion engines are the primary transportation mover for today society and they will likely continue to be for decades to come. Hybridization is the most common solution to reduce the petrol-fuels consumption and to respect the new raw emission limits. The gasoline engines designed for running together with an electric motor need to have a very high thermal efficiency because they must work at high loads, where engine thermal efficiency is close to the maximum one. Therefore, the technical solutions bringing to thermal efficiency enhancement were adopted on HVs (Hybrid Vehicles) prior to conventional vehicles. In these days, these solutions are going to be adopted on conventional vehicles too. The purpose of this work was to trace development guidelines useful for engine designers, based on the target power and focused on the maximization of the engine thermal efficiency, following the engine rightsizing concept.
Technical Paper

Development of Adaptive-ECMS and predictive functions for Plug-in HEVs to Handle Zero-Emission Zones Using Navigation Data

2021-09-05
2021-24-0105
The paper deals with the reduction of pollutant emissions in urban areas by considering a Zero-Emission Zone (ZEZ) in which hybrid electric vehicles (HEVs) are allowed to be driven without using the internal combustion engine, as several cities have planned to realize in the next decades. Moreover, since vehicle connectivity has spread more and more in the last years, a vehicle-to-network (V2N) communication system has been taken into account to retrieve real-time navigation data from a map service provider and thus reconstructing the so-called electronic horizon, which is a reconstruction of the future conditions of the vehicle on the road ahead. The speed profile and the road slope are used as input for an on-board predictive control strategy of a plug-in HEV (PHEV). In particular, a dedicated algorithm predicts the amount of necessary energy to complete the city event in full-electric mode, giving a state of charge (SoC) target value.
Technical Paper

Development and Experimental Validation of a Control-Oriented Empirical Exhaust Gas Temperature Model

2020-09-27
2020-24-0008
Modern turbo-charged downsized engines reach high values of specific power, causing a significant increase of the exhaust gas temperature. Such parameter plays a key role in the overall powertrain environmental impact because it strongly affects both the catalyst efficiency and the turbine durability. In fact, common techniques to properly manage the turbine inlet gas temperature are based on mixture enrichment, which causes both a steep increase in specific fuel consumption and a decrease of catalyst efficiency. At the test bench, exhaust gas temperature is typically measured using thermocouples that are not available for on-board application, and such information is processed to calibrate open-loop look-up-tables. A real-time, reliable, and accurate exhaust temperature model would then represent a strategic tool for improving the performance of the engine control system.
Technical Paper

Modeling, Validation and Control Strategy Development of a Hybrid Super Sport Car Based on Lithium Ion Capacitors

2020-04-14
2020-01-0442
Today, the contribution of the transportation sector on greenhouse gases is evident. The fast consumption of fossil fuels and its impact on the environment have given a strong impetus to the development of vehicles with better fuel economy. Hybrid electric vehicles fit into this context with different targets, starting from the reduction of emissions and fuel consumption, but also for performance and comfort enhancement. Lamborghini has recently invested in the development of a hybrid super sport car, due to performance and comfort reasons. Aventador series gearbox is an Independent Shift Rod gearbox with a single clutch and during gear shifts, as all the single clutch gearbox do, it generates a torque gap. To avoid the additional weight of a Dual Clutch Transmission, a 48V Electric Motor has been connected to the wheels, in a P3 configuration, to fill the torque gap, and to habilitate regenerative braking and electric boost functions.
Technical Paper

Combined Optimization of Energy and Battery Thermal Management Control for a Plug-in HEV

2019-10-07
2019-24-0249
This paper presents an optimization algorithm, based on discrete dynamic programming, that aims to find the optimal control inputs both for energy and thermal management control strategies of a Plug-in Hybrid Electric Vehicle, in order to minimize the energy consumption over a given driving mission. The chosen vehicle has a complex P1-P4 architecture, with two electrical machines on the front axle and an additional one directly coupled with the engine, on the rear axle. In the first section, the algorithm structure is presented, including the cost-function definition, the disturbances, the state variables and the control variables chosen for the optimal control problem formulation. The second section reports the simplified quasi-static analytical model of the powertrain, which has been used for backward optimization. For this purpose, only the vehicle longitudinal dynamics have been considered.
Technical Paper

Experimental Validation of a Model-Based Water Injection Combustion Control System for On-Board Application

2019-09-09
2019-24-0015
Water Injection (WI) has become a key technology for increasing combustion efficiency in modern GDI turbocharged engines. In fact, the addition of water mitigates significantly the occurrence of knock, reduces exhaust gas temperatures, and opens the possibility to reach optimum heat release phasing even at high load. This work presents the latest development of a model-based WI controller, and its experimental validation on a GDI TC engine. The controller is based on a novel approach that involves an analytic combustion model to define the spark advance (SA) required to reach a combustion phase target, considering injected water mass effects. The calibration and experimental validation of the proposed controller is shown in detail in the paper.
Technical Paper

Development and Software in the Loop Validation of a Model-based Water Injection Combustion Controller for a GDI TC Engine

2019-04-02
2019-01-1174
Turbocharged (TC) engines work at high Indicated Mean Effective Pressure (IMEP), resulting in high in-cylinder pressures and temperatures, improving thermal efficiency, but at the same time increasing the possibility of abnormal combustion events like knock and pre-ignition. To mitigate knocking conditions, engine control systems typically apply spark retard and/or mixture enrichment, which decrease indicated work and increase specific fuel consumption. Many recent studies have advocated Water Injection (WI) as an approach to replace or supplement existing knock mitigation techniques. Water reduces temperatures in the end gas zone due to its high latent heat of vaporization. Furthermore, water vapor acts as diluent in the combustion process. In this paper, the development of a novel closed-loop, model-based WI controller is discussed and critically analyzed.
Technical Paper

Conceptual Design and Analytic Assessment of 48V Electric Hybrid Powertrain Architectures for Passenger Cars

2019-04-02
2019-01-0353
To meet the requirements in relation to pollutants, CO2-emissions, performances, comfort and costs for 2025 timeframe, many technology options for the powertrain, that plays a key role in the vehicle, are possible. Beside the central aspect of reducing standard cycle consumption levels and emissions, consumer demands are also growing with respect to comfort and functionality. In addition, there is also the challenge of finding cost efficient ways of integrating technologies into a broad range of vehicles with different levels of hybridization. High degrees of electrification simultaneously provide opportunities to reduce the technology content of the internal combustion engines (ICE), resulting in a cost balancing compromise between combustion engine and hybrid technology. The design and optimization of powertrain topologies, functionalities, and components require a complex development process.
Technical Paper

Predictive Energy Management Strategies for Hybrid Electric Vehicles: Fuel Economy Improvement and Battery Capacity Sensitivity Analysis

2018-04-03
2018-01-0998
This paper shows the influence of different battery charge management strategies on the fuel economy of a hybrid parallel axle-split vehicle in a real driving scenario, for a vehicle control system that has the additional possibility to split the torque between front and rear axles. The first section regards the validation of a self-developed Model in the Loop (MiL) environment of a P1-P4 plug-in hybrid electric car, using experimental data of a New European Driving Cycle test. In its original version, which is implemented on-board the vehicle, the energy management supervisor implements a heuristic, or rule-based, Energy Management Strategy (EMS). During this project, a different EMS has been developed, consisting of a sub-optimal control scheme called Equivalent Consumption Minimization Strategy (ECMS), explained in detail in the second section.
Technical Paper

Parametric Analysis of the Effect of the Fluid Properties and the Mesh Setup by Using the Schnerr-Sauer Cavitation Model

2017-09-04
2017-24-0105
The primary target of the internal combustion engines design is to lower the fuel consumption and to enhance the combustion process quality, in order to reduce the raw emission levels without performances penalty. In this scenario the direct injection system plays a key role for both diesel and gasoline engines. The spray dynamic behaviour is crucial in defining the global and the local air index of the mixture, which in turns affects the combustion process development. At the same time it is widely recognized that the spray formation is influenced by numerous parameters, among which also the cavitation process inside every single hole of the injector nozzle. The proper prediction of the cavitation development inside the injector nozzle holes is crucial in predicting the liquid jet emerging from them.
Journal Article

Individual Cylinder Air-Fuel Ratio Control for Engines with Unevenly Spaced Firing Order

2017-03-28
2017-01-0610
The most recent European regulations for two- and three-wheelers (Euro 5) are imposing an enhanced combustion control in motorcycle engines to respect tighter emission limits, and Air-Fuel Ratio (AFR) closed-loop control has become a key function of the engine management system also for this type of applications. In a multi-cylinder engine, typically only one oxygen sensor is installed on each bank, so that the mean AFR of two or more cylinders rather than the single cylinder one is actually controlled. The installation of one sensor per cylinder is normally avoided due to cost, layout and reliability issues. In the last years, several studies were presented to demonstrate the feasibility of an individual AFR controller based on a single sensor. These solutions are based on the mathematical modelling of the engine air path dynamics, or on the frequency analysis of the lambda probe signal.
Technical Paper

Application of Acoustic and Vibration-Based Knock Detection Techniques to a High Speed Engine

2017-03-28
2017-01-0786
Knock control systems based on engine block vibrations analysis are widely adopted in passenger car engines, but such approach shows its main limits at high engine speeds, since knock intensity measurement becomes less reliable due to the increased background mechanical noise. For small two wheelers engines, knock has not been historically considered a crucial issue, mainly due to small-sized combustion chambers and mixture enrichment. Due to more stringent emission regulations and in search of reduced CO2 emissions, an effective on-board knock controller acquires today greater importance also for motorcycle applications, since it could protect the engine when different fuel types are used, and it could significantly reduce fuel consumption (by avoiding lambda enrichment and/or allowing higher compression ratios to be adopted). These types of engines typically work at high rotational speeds and the reduced signal to noise ratio makes knock onset difficult to identify.
Technical Paper

Airship and Hot Air Balloon Real Time Envelope Shape Prediction through a Cloth Simulation Technique

2015-09-15
2015-01-2578
The flight simulation of airships and hot air balloons usually considers the envelope geometry as a fixed shape, whose volume is eventually reduced by ballonets. However, the dynamic pressure or helium leaks in airships, and the release of air to allow descent in hot air balloons can significantly change the shape of the envelope leading to potential dangerous situations. In fact, in case of semi-rigid and non-rigid airships a reduction in envelope internal pressure can reduce the envelope bending stiffness leading to the loss of the typical axial-symmetric shape. For hot air balloons thing goes even worse since the lost of internal pressure can lead to the collapsing of the balloon shape to a sort of vertically stretched geometry (similar to a torch) which is not able to sustain the attached basket and its payload.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Technical Paper

A 3D User and Maintenance Manual for UAVs and Commercial Aircrafts Based on Augmented Reality

2015-09-15
2015-01-2473
Traditional User/Maintenance Manuals provide useful information when dealing with simple machines. However, when dealing with complex systems of systems and highly miniaturized technologies, like UAVs, or with machines with millions of parts, a commercial aircraft is a case in point, new technologies taking advantage of Augmented Reality can rapidly and effectively support the maintenance operations. This paper presents a User/Maintenance Manual based on Augmented Reality to help the operator in the detection of parts and in the sequence to be followed to assemble/disassemble systems and subsystems. The proposed system includes a handheld device and/or an head mounted display or special goggles, to be used by on-site operators, with software management providing data fusion and overlaying traditional 2D user/maintenance manual information with an augmented reality software and appropriate interface.
Technical Paper

Image Processing Based Air Vehicles Classification for UAV Sense and Avoid Systems

2015-09-15
2015-01-2471
The maturity reached in the development of Unmanned Air Vehicles (UAVs) systems is making them more and more attractive for a vast number of civil missions. Clearly, the introduction of UAVs in the civil airspace requiring practical and effective regulation is one of the most critical issues being currently discussed. As several civil air authorities report in their regulations “Sense and Avoid” or “Detect and Avoid” capabilities are critical to the successful integration of UAV into the civil airspace. One possible approach to achieve this capability, specifically for operations beyond the Line-of-Sight, would be to equip air vehicles with a vision-based system using cameras to monitor the surrounding air space and to classify other air vehicles flying in close proximity. This paper presents an image-based application for the supervised classification of air vehicles.
Technical Paper

CFRP Crash Absorbers in Small UAV: Design and Optimization

2015-09-15
2015-01-2461
The high number of hull losses is a main concern in the UAV field, mostly due to the high cost of on-board equipment. A crashworthiness design can be helpful to control the extent and position of crash impact damage, minimizing equipment losses. However, the wide use of composite materials has recently put the accent on the lack of data about the behavior of these structures under operative loads, such as the crash conditions. This paper presents the outcome of a set of tests carried out to achieve a controlled crush of UAV structures, and to maximize the Specific Energy Absorption. In this work, a small-scale experimental test able to characterize the energy absorption of a Carbon-fiber-reinforced polymer under compression was developed introducing self-supporting sinusoidal shape specimens, which avoid the need for complex anti-buckling devices.
X