Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Reduced order model for modal analysis of electric motors considering material and dimensional variations

2024-06-12
2024-01-2945
With the electrification of the automotive industry, electric motors have emerged as pivotal components. A profound understanding of their vibrational behaviour stands as a cornerstone for guaranteeing not only the optimal performance and reliability of vehicles in terms of noise, vibration, and harshness (NVH), but also the overall driving experience. The use of conventional finite element analysis (FEA) techniques for identification of the natural frequencies characteristics of electric motors often imposes significant computational loads, particularly when accurate material and geometrical properties and wider frequency ranges are considered. On the other hand, traditional reduced order vibroacoustic methodologies utilising simplified 2D representations, introduce several assumptions regarding boundary conditions and properties, leading to sacrifices in the accuracy of the results.
Technical Paper

Comparison of Neural Network Topologies for Sensor Virtualisation in BEV Thermal Management

2024-04-09
2024-01-2005
Energy management of battery electric vehicle (BEV) is a very important and complex multi-system optimisation problem. The thermal energy management of a BEV plays a crucial role in consistent efficiency and performance of vehicle in all weather conditions. But in order to manage the thermal management, it requires a significant number of temperature sensors throughout the car including high voltage batteries, thus increasing the cost, complexity and weight of the car. Virtual sensors can replace physical sensors with a data-driven, physical relation-driven or machine learning-based prediction approach. This paper presents a framework for the development of a neural network virtual sensor using a thermal system hardware-in-the-loop test rig as the target system. The various neural network topologies, including RNN, LSTM, GRU, and CNN, are evaluated to determine the most effective approach.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

Modelling and Simulation of Mixed Phase Ice Crystal Icing in Three-Dimensions

2023-06-15
2023-01-1475
High altitude ice crystals have led to instances of ice accretion on stationary compressor surfaces in aeroengines. Rollback, surge and stall events are known to have been instigated through such accretions due to aerodynamic losses related to ice growth, damage and flameout due to ice shedding. The prevalence of these events has led to a change in certification requirements for icing conditions. Development of accurate numerical models allows the costs of certification and testing to be minimised. An in-house computational code was developed at the Oxford Thermofluids Institute to model glaciated and mixed-phase ice crystal icing. The Ice Crystal Icing ComputationaL Environment (ICICLE) code, comprises a frozen 2D flowfield solution, Lagrangian particle tracking, particle heat transfer and phase change and particle surface interaction modelling.
Technical Paper

Quantitative Multi-Physics Tools for Automotive Wiper Design

2023-04-11
2023-01-0602
The primary function of automotive windscreen wipers is to remove excess water and debris to secure a clear view for the driver. Their successful operation is imperative to vehicle occupants’ safety. To avoid reliance on experimental testing there is a need to develop physics-based models that can quantify the effects of design-based decisions on automotive wipers. This work presents a suite of evaluative tools that can provide quantitative data on the effects of design decisions. We analyse the complex non-linear contact interaction between the wiper blade and the automotive screen using finite element analysis, assessing the impact of blade geometry on the contact distribution. The influence of the evolution of normal applied load by the wiper arm is also investigated as to how it impacts the contact distribution evolution. The dynamics of the blade are subsequently analysed using a multiple connected mass spring damper system.
Journal Article

Isolated Low Temperature Heat Release in Spark Ignition Engines

2023-04-11
2023-01-0235
Low temperature heat release (LTHR) has been of interest to researchers for its potential to mitigate knock in spark ignition (SI) engines and control auto-ignition in advanced compression ignition (ACI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high temperature heat release (HTHR) event by appropriately curating the in-cylinder thermal state during compression, or in the case of SI engines, timing the spark discharge late to reveal LTHR (sometimes referred to as pre-spark heat release). In this work, LTHR is demonstrated in isolation from HTHR events. Tests were run on motored single-cylinder engines and inlet air temperatures and pressures were adjusted to realise LTHR from n-heptane and iso-octane (2,2,4-trimethylpentane) without entering the HTHR regime. LTHR was observed for a lean n-heptane-air mixture at inlet temperatures ranging from 60°C to 100°C and inlet pressures of 0.9 bar (absolute).
Technical Paper

An Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles

2022-03-29
2022-01-0741
Models of hybrid powertrains are used to establish the best combination of conventional engine power and electric motor power for the current driving situation. The model is characteristic for having two control inputs and one output constraint: the total torque should be equal to the torque requested by the driver. To eliminate the constraint, several alternative formulations are used, considering engine power or motor power or even the ratio between them as a single control input. From this input and the constraint, both power levels can be deduced. There are different popular choices for this one control input. This paper presents a novel model based on an input linearizing transformation. It is demonstrably superior to alternative model forms, in that the core dynamics of the model (battery state of energy) are linear, and the non-linearities of the model are pushed into the inputs and outputs in a Wiener/Hammerstein form.
Technical Paper

Evaluation of Optimal State of Charge Planning Using MPC

2022-03-29
2022-01-0742
Hybrid technologies enable the reduction of noxious tailpipe emissions and conformance with ever-decreasing allowable homologation limits. The complexity of the hybrid powertrain technology leads to an energy management problem with multiple energy sinks and sources comprising the system resulting in a high-dimensional time dependent problem for which many solutions have been proposed. Methods that rely on accurate predictions of potential vehicle operations are demonstrably more optimal when compared to rule-based methodology [1]. In this paper, a previously proposed energy management strategy based on an offline optimization using dynamic programming is investigated. This is then coupled with an online model predictive control strategy to follow the predetermined optimal battery state of charge trajectory prescribed by the dynamic program.
Journal Article

Modeling Transient Control of a Turbogenerator on a Drive Cycle

2022-03-29
2022-01-0415
GTDI engines are becoming more efficient, whether individually or part of a HEV (Hybrid Electric Vehicle) powertrain. For the latter, this efficiency manifests itself as increase in zero emissions vehicle mileage. An ideal device for energy recovery is a turbogenerator (TG), and, when placed downstream the conventional turbine, it has minimal impact on catalyst light-off and can be used as a bolt-on aftermarket device. A Ricardo WAVE model of a representative GTDI engine was adapted to include a TG (Turbogenerator) and TBV (Turbine Bypass Valve) with the TG in a mechanical turbocompounding configuration, calibrated using steady state mapping data. This was integrated into a co-simulation environment with a SISO (Single-Input, Single-Output) dynamic controller developed in SIMULINK for the actuator control (with BMEP, manifold air pressure and TG pressure ratio as the controlled variables).
Technical Paper

On the Validity of Steady-State Gasoline Engine Characterization Methodology for Generation of Optimal Calibrations Used in Real World Driving

2022-03-29
2022-01-0579
Vehicle emissions and fuel economy in real-world driving conditions are currently under considerable scrutiny. Key to achieving optimum performance for a given hardware set and control scheme is a calibration that optimizes controller gains such that inputs are scheduled over the operating space to minimize emissions and maximize fuel economy. Generating a suitable calibration requires data that is both precise and accurate, this data is used to generate models that are deployed as part of the calibration optimization process. This paper evaluates the repeatability of typical steady-state measurements used for calibration of engine controllers that will ultimately determine vehicle level emissions for homologation include Real Driving Emissions (RDE). Stabilization requirements as indicated by three different measurements are evaluated and shown to be different within the same experiment, depending on the metric used.
Journal Article

Characterisation of the Tyre Spray Ejected Downstream of a Bluff Automotive Body

2022-03-29
2022-01-0893
Considerations of surface contamination and airborne spray are becoming increasingly significant throughout the automotive design process. Advanced driver assistance systems, such as autonomous cruise control, are growing in popularity. These systems rely on external sensors, the performance of which may be impaired by both direct obstruction and spray. Existing experimental methods of assessing front-end surface contamination and wiper performance have typically utilised fixed spray-grids positioned upstream of the vehicle. The resulting spray is largely steady in nature, in contrast to the unsteady flow-field and tyre spray that would be produced by preceding vehicles. This paper presents the numerical analysis of the spray ejected downstream of a simplified automotive body. The continuous phase (air) is solved using a DDES-based approach coupled with a Lagrangian representation of the dispersed phase (water).
Technical Paper

Real-Time Sound and Vibration Modelling for Electric Motor

2021-08-31
2021-01-1081
The replacement of the ICE engine with an electric motor has led to a significant reduction in vibration and noise. The characteristics of the electric motor as part of the powertrain still need consideration from an NVH perspective, as there are still two highly tonal components generating noise to the cabin, albeit at higher frequencies. The radial electromagnetic force causes a structural vibration on the casing which changes with motor speed and can be used to indicate vehicle speed. The current excitation causes a primarily tangential force on the poles of the motor at a specific frequency, but both are narrow band and can cause annoyance. The traditional approach to predicting the sound radiation of electric motors is usually based on finite element analysis (FEA). While this method has the capability to estimate the time response, it is computationally too demanding and does not allow for early investigations at systems level.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

On the Prediction of Spray A End of Injection Phenomenon Using Conditional Source-Term Estimation

2020-04-14
2020-01-0779
In this study, the role of turbulence-chemistry interaction in diesel spray auto-ignition, flame stabilization and end of injection phenomena is investigated under engine relevant “Spray A” conditions. A recently developed diesel spray combustion modeling approach, Conditional Source-term Estimation (CSE-FGM), is coupled with Reynolds-averaged Navier-Stokes simulation (RANS) framework to study the details of spray combustion. The detailed chemistry mechanism is included through the Flamelet Generated Manifold (FGM) method. Both unsteady and steady flamelet solutions are included in the manifold to account for the auto-ignition process and the subsequent flame propagation in a diesel spray. Conditionally averaged chemical source terms are closed by the conditional scalars obtained in the CSE routine. Both non-reacting and reacting spray jets are computed over a wide range of Engine Combustion Network (ECN) diesel. “Spray A” conditions.
Technical Paper

The Effect of an Active Thermal Coating on Efficiency and Emissions from a High Speed Direct Injection Diesel Engine

2020-04-14
2020-01-0807
This study looked into the application of active thermal coatings on the surfaces of the combustion chamber as a method of improving the thermal efficiency of internal combustion engines. The active thermal coating was applied to a production aluminium piston and its performance was compared against a reference aluminium piston on a single-cylinder diesel engine. The two pistons were tested over a wide range of speed/load conditions and the effects of EGR and combustion phasing on engine performance and tailpipe emissions were also investigated. A detailed energy balance approach was employed to study the thermal behaviour of the active thermal coating. In general, improvements in indicated specific fuel consumption were not statistically significant for the coated piston over the whole test matrix. Mean exhaust temperature showed a marginal increase with the coated piston of up to 6 °C.
Technical Paper

Probabilistic Analysis of Bimodal State Distributions in SCR Aftertreatment Systems

2020-04-14
2020-01-0355
Sensor selection for the control of modern powertrains is a recognised technical challenge. The key question is which set of sensors is best suited for an effective control strategy? This paper addresses the question through probabilistic modelling and Bayesian analysis. By quantifying uncertainties in the model, the propagation of sensor information throughout the model can be observed. The specific example is an abstract model of the slip behaviour of Selective Catalytic Reduction (SCR) DeNOx aftertreatment systems. Due to the ambiguity of the sensor reading, linearization-based approaches including the Extended Kalman Filter, or the Unscented Kalman Filter are not successful in resolving this problem. The stochastic literature suggests approximating these nonlinear distributions using methods such as Markov Chain Monte Carlo (MCMC), which is able in principle to resolve bimodal or multimodal results.
Technical Paper

Holistic Thermal Energy Modelling for Full Hybrid Electric Vehicles (HEVs)

2020-04-14
2020-01-0151
Full hybrid electric vehicles are usually defined by their capability to drive in a fully electric mode, offering the advantage that they do not produce any emissions at the point of use. This is particularly important in built up areas, where localized emissions in the form of NOx and particulate matter may worsen health issues such as respiratory disease. However, high degrees of electrification also mean that waste heat from the internal combustion engine is often not available for heating the cabin and for maintaining the temperature of the powertrain and emissions control system. If not managed properly, this can result in increased fuel consumption, exhaust emissions, and reduced electric-only range at moderately high or low ambient temperatures negating many of the benefits of the electrification. This paper describes the development of a holistic, modular vehicle model designed for development of an integrated thermal energy management strategy.
Technical Paper

Numerical Investigation of Heat Retention and Warm-Up with Thermal Encapsulation of Powertrain

2020-04-14
2020-01-0158
Powertrain thermal encapsulation has the potential to improve fuel consumption and CO2 via heat retention. Heat retained within the powertrain after a period of engine-off, can increase the temperature of the next engine start hours after key-off. This in turn reduces inefficiencies associated with sub-optimal temperatures such as friction. The Ambient Temperature Correction Test was adopted in the current work which contains two World-wide harmonised Light duty Test Procedure (WLTP) cycles separated by a 9-hour soak period. A coupled 1D - 3D computational approach was used to capture heat retention characteristics and subsequent warm-up effects. A 1-D powertrain warm-up model was developed in GT-Suite to capture the thermal warm-up characteristics of the powertrain. The model included a temperature dependent friction model, the thermal-hydraulic characteristics of the cooling and lubrication circuits as well as parasitic losses associated with pumps.
Journal Article

Experimental Interpretation of Compression Ignition In-Cylinder Flow Structures

2020-04-14
2020-01-0791
Understanding and predicting in-cylinder flow structures that occur within compression-ignition engines is vital if further optimisation of combustion systems is to be achieved. To enable this prediction, fully validated computational models of the complex turbulent flow-fields generated during the intake and compression process are needed. However, generating, analysing and interpreting experimental data to achieve this validation remains a complex challenge due to the variability that occurs from cycle to cycle. The flow-velocity data gathered in this study, obtained from a single-cylinder CI engine with optical access using high-speed PIV, demonstrates that significantly different structures are generated over different cycles, resulting in the mean flow failing to adequately reflect the typical flow produced in-cylinder.
X