Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
Technical Paper

Methanol Mixing-Controlled Compression Ignition with Ignition Enhancer for Off-Road Engine Operation

2024-04-09
2024-01-2701
Methanol is one of the most promising fuels for the decarbonization of the off-road and transportation sectors. Although methanol is typically seen as an alternative fuel for spark ignition engines, mixing-controlled compression ignition (MCCI) combustion is typically preferred in most off-road and medium-and heavy-duty applications due to its high reliability, durability and high-efficiency. In this paper, the potential of using ignition enhancers to enable methanol MCCI combustion was investigated. Methanol was blended with 2-ethylhexyl nitrate (EHN) and experiments were performed in a single-cylinder production-like diesel research engine, which has a displacement volume of 0.83 L and compression ratio of 16:1. The effect of EHN has been evaluated with three different levels (3%vol, 5%vol, and 7%vol) under low- and part-load conditions. The injection timing has been swept to find the stable injection window for each EHN level and load.
Technical Paper

Effects of Ethanol Blending on the Reactivity and Laminar Flame Speeds of Gasoline, Methanol-to-Gasoline, and Ethanol-to-Gasoline Surrogates

2024-04-09
2024-01-2817
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity.
Technical Paper

From Idle to 7.5 Bar IMEPg – Using Fuel Stratification to Control LTGC with Next-Cycle Capability

2024-04-09
2024-01-2821
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies with very low NOx and soot emissions, but rapid control of the combustion timing remains a challenge. Partial Fuel Stratification (PFS) was demonstrated to be an effective approach to control combustion in LTGC engines. PFS is produced by a double-direct injection (DI) strategy with most of the fuel injected early in the cycle and the remainder of the fuel supplied by a second injection at a variable time during the compression stroke to vary the amount of stratification. Adjusting the stratification changes the combustion phasing, and this can be done on cycle-to-cycle basis by adjusting the injection timing. In this paper, the ability of PFS to control the combustion during wide engine load sweeps is assessed for regular gasoline and gasoline doped with 2-ethylhexyl nitrate (EHN). For PFS, the load control range is limited by combustion instability and poor combustion efficiency at low loads.
Technical Paper

Deflagration-Based Knock of Methanol SI Combustion and its Implications for Combustion Noise

2024-04-09
2024-01-2819
Methanol emerges as a compelling renewable fuel for decarbonizing engine applications due to a mature industry with high production capacity, existing distribution infrastructure, low carbon intensity and favorable cost. Methanol’s high flame speed and high autoignition resistance render it particularly well-suited for spark-ignition (SI) engines. Previous research showed a distinct phenomenon, known deflagration-based knock in methanol combustion, whereby knocking combustion was observed albeit without end-gas autoignition. This work studies the implications of deflagration-based knock on noise emissions by investigating the knock intensity and combustion noise at knock-limited operation of methanol in a single-cylinder direct-injection SI engine operated at both stoichiometric and lean (λ = 2.0) conditions. Results are compared against observations from a premium-grade gasoline.
Technical Paper

Effect of Cyclo-Pentane Impurities on the Autoignition Reactivity and Properties of a Gasoline Surrogate Fuel

2024-02-16
2024-01-5021
Surrogate fuels that reproduce the characteristics of full-boiling range fuels are key tools to enable numerical simulations of fuel-related processes and ensure reproducibility of experiments by eliminating batch-to-batch variability. Within the PACE initiative, a surrogate fuel for regular-grade E10 (10%vol ethanol) gasoline representative of a U.S. market gasoline, termed PACE-20, was developed and adopted as baseline fuel for the consortium. Although extensive testing demonstrated that PACE-20 replicates the properties and combustion behavior of the full-boiling range gasoline, several concerns arose regarding the purity level required for the species that compose PACE-20. This is particularly important for cyclo-pentane, since commercial-grade cyclo-pentane typically shows 60%–85% purity. In the present work, the effects of the purity level of cyclo-pentane on the properties and combustion characteristics of PACE-20 were studied.
Technical Paper

Impact of Hydrogen on the Ignition and Combustion Behavior Diesel Sprays in a Dual Fuel, Diesel-Piloted, Premixed Hydrogen Engine

2023-08-28
2023-24-0061
Renewably sourced hydrogen is seen as promising sustainable carbon-free alternative to conventional fossil fuels for use in hard to decarbonize sectors. As the hydrogen supply builds up, dual-fuel hydrogen-diesel engines have a particular advantage of fuel flexibility as they can operate only on diesel fuel in case of supply shortages, in addition to the simplicity of engine modification. The dual-fuel compression ignition strategy initiates combustion of hydrogen using short pilot-injections of diesel fuel into the combustion chamber. In the context of such engine combustion process, the impact of hydrogen addition on the ignition and combustion behavior of a pilot diesel-spray is investigated in a heavy-duty, single-cylinder, optical engine. To this end, the spatial and temporal evolution of two-stage autoignition of a diesel-fuel surrogate, n-heptane, injected into a premixed charge of hydrogen and air is studied using optical diagnostics.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Effect of Spray Collapse on Mixture Preparation and Combustion Characteristics of a Spark-Ignition Heavy-Duty Diesel Optical Engine Fueled with Direct-Injected Liquefied Petroleum Gas (LPG)

2023-04-11
2023-01-0323
Liquefied Petroleum Gas (LPG), as a common alternative fuel for internal combustion engines is currently widespread in use for fleet vehicles. However, a current majority of the LPG-fueled engines, uses port-fuel injection that offers lower power density when compared to a gasoline engine of equivalent displacement volume. This is due to the lower molecular weight and higher volatility of LPG components that displaces more air in the intake charge due to the larger volume occupied by the gaseous fuel. LPG direct-injection during the closed-valve portion of the cycle can avoid displacement of intake air and can thereby help achieve comparable gasoline-engine power densities. However, under certain engine operating conditions, direct-injection sprays can collapse and lead to sub-optimal fuel-air mixing, wall-wetting, incomplete combustion, and increased pollutant emissions.
Technical Paper

Exploration of Fuel Property Impacts on the Combustion of Late Post Injections Using Binary Blends and High-Reactivity Ether Bioblendstocks

2023-04-11
2023-01-0264
In this study, the impacts of fuel volatility and reactivity on combustion stability and emissions were studied in a light-duty single-cylinder research engine for a three-injection catalyst heating operation strategy with late post-injections. N-heptane and blends of farnesane/2,2,4,4,6,8,8-heptamethylnonane were used to study the impacts of volatility and reactivity. The effect of increased chemical reactivity was also analysed by comparing the baseline #2 diesel operation with a pure blend of mono-ether components (CN > 100) representative of potential high cetane oxygenated bioblendstocks and a 25 vol.% blend of the mono-ether blend and #2 diesel with a cetane number (CN) of 55. At constant reactivity, little to no variation in combustion performance was observed due to differences in volatility, whereas increased reactivity improved combustion stability and efficiency at late injection timings.
Technical Paper

Characterization of High-Tumble Flow Effects on Early Injection for a Lean-Burn Gasoline Engine

2023-04-11
2023-01-0238
The influence of early induction stroke direct injection on late-cycle flows was investigated for a lean-burn, high-tumble, gasoline engine. The engine features side-mounted injection and was operated at a moderate load (8.5 bar brake mean effective pressure) and engine speed (2000 revolutions per minute) condition representative of a significant portion of the duty cycle for a hybridized powertrain system. Thermodynamic engine tests were used to evaluate cam phasing, injection schedule, and ignition timing such that an optimal balance of acceptable fuel economy, combustion stability, and engine-out nitrogen oxide (NOx) emissions was achieved. A single cylinder of the 4-cylinder thermodynamic engine was outfitted with an endoscope that enabled direct imaging of the spark discharge and early flame development.
Technical Paper

Combined Impacts of Engine Speed and Fuel Reactivity on Energy-Assisted Compression-Ignition Operation with Sustainable Aviation Fuels

2023-04-11
2023-01-0263
The combined impacts of engine speed and fuel reactivity on energy-assisted compression-ignition (EACI) combustion using a commercial off-the-shelf (COTS) ceramic glow plug for low-load operation werexxz investigated. The COTS glow plug, used as the ignition assistant (IA), was overdriven beyond its conventional operation range. Engine speed was varied from 1200 RPM to 2100 RPM. Three fuel blends consisting of a jet-A fuel with military additives (F24) and a low cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) were tested with cetane numbers (CN) of 25.9, 35.5, and 48.5. The ranges of engine speed and fuel cetane numbers studied are significantly larger than those in previous studies of EACI or glow-plug assisted combustion, and the simultaneous variation of engine speed and fuel reactivity are unique to this work. For each speed and fuel, a single-injection of fixed mass was used and the start of injection (SOI) was swept for each IA power.
Technical Paper

CFD-Based Assessment of the Effect of End-Gas Temperature Stratification on Acoustic Knock Generation in an Ultra-Lean Burn Spark Ignition Engine

2023-04-11
2023-01-0250
End-gas temperature stratification has long been studied with respect to its effect on stoichiometric spark-ignition (SI) engine knock. The role of temperature stratification for homogeneous-charge compression ignition (HCCI) engine operation is also reasonably well understood. However, the role of temperature stratification in ultra-lean SI engines has had less coverage. Literature is lacking well-controlled studies of how knock is affected by changes in the full cylinder temperature fields, especially since cycle-to-cycle variability can impede a determination of cause and effect. In this work, the knocking propensity of specific cylinder conditions is investigated via 3D computational fluid dynamics (CFD) simulations utilizing a large eddy simulation (LES) framework.
Journal Article

A Numerical Approach for the Analysis of Hydrotreated Vegetable Oil and Dimethoxy Methane Blends as Low-Carbon Alternative Fuel in Compression Ignition Engines

2023-04-11
2023-01-0338
Despite recent advances towards powertrain electrification as a solution to mitigate pollutant emissions from road transport, synthetic fuels (especially e- fuels) still have a major role to play in applications where electrification will not be viable in short-medium term. Among e-fuels, oxymethylene ethers are getting serious interest within the scientific community and industry. Dimethoxy methane (OME1) is the smaller molecule among this group, which is of special interest due to its low soot formation. However, its application is still limited mainly due to its low lower heating value. In contrast, other fuel alternatives like hydrogenated vegetable oil (HVO) are considered as drop-in solutions thanks to their very similar properties and molecular composition to that of fossil diesel. However, their pollutant emission improvement is limited.
Journal Article

Understanding Hydrocarbon Emissions to Improve the Performance of Catalyst-Heating Operation in a Medium-Duty Diesel Engine

2023-04-11
2023-01-0262
To cope with regulatory standards, minimizing tailpipe emissions with rapid catalyst light-off during cold-start is critical. This requires catalyst-heating operation with increased exhaust enthalpy, typically by using late post injections for retarded combustion and, therefore, increased exhaust temperature. However, retardability of post injection(s) is constrained by acceptable pollutant emissions such as unburned hydrocarbon (UHC). This study provides further insight into the mechanisms that control the formation of UHC under catalyst-heating operation in a medium-duty diesel engine, and based on the understanding, develops combustion strategies to simultaneously improve exhaust enthalpy and reduce harmful emissions. Experiments were performed with a full boiling-range diesel fuel (cetane number of 45) using an optimized five-injections strategy (2 pilots, 1 main, and 2 posts) as baseline condition.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Journal Article

Development and Validation of an EHN Mechanism for Fundamental and Applied Chemistry Studies

2022-03-29
2022-01-0455
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments.
Journal Article

Gasoline Direct Injector Deposits: Impacts of Fouling Mechanism on Composition and Performance

2022-03-29
2022-01-0488
Injector performance in gasoline Direct-Injection Spark-Ignition (DISI) engines is a key focus in the automotive industry as the vehicle parc transitions from Port Fuel Injected (PFI) to DISI engine technology. DISI injector deposits, which may impact the fuel delivery process in the engine, sometimes accumulate over longer time periods and greater vehicle mileages than traditional combustion chamber deposits (CCD). These higher mileages and longer timeframes make the evaluation of these deposits in a laboratory setting more challenging due to the extended test durations necessary to achieve representative in-use levels of fouling. The need to generate injector tip deposits for research purposes begs the questions, can an artificial fouling agent to speed deposit accumulation be used, and does this result in deposits similar to those formed naturally by market fuels?
Journal Article

Effect of Fuel Cetane Number on the Performance of Catalyst-Heating Operation in a Medium-duty Diesel Engine

2022-03-29
2022-01-0483
To comply with increasingly stringent pollutant emissions regulations, diesel engine operation in a catalyst-heating mode is critical to achieve rapid light-off of exhaust aftertreatment catalysts during the first minutes of cold starting. Current approaches to catalyst-heating operation typically involve one or more late post injections to retard combustion phasing and increase exhaust temperatures. The ability to retard post injection timing(s) while maintaining acceptable pollutant emissions levels is pivotal for improved catalyst-heating calibrations. Higher fuel cetane number has been reported to enable later post injections with increased exhaust heat and decreased pollutant emissions, but the mechanism is not well understood. The purpose of this experimental and numerical simulation study is to provide further insight into the ways in which fuel cetane number affects combustion and pollutant formation in a medium-duty diesel engine.
Journal Article

A Review of Current Understanding of the Underlying Physics Governing the Interaction, Ignition and Combustion Dynamics of Multiple-Injections in Diesel Engines

2022-03-29
2022-01-0445
This work is a comprehensive technical review of existing literature and a synthesis of current understanding of the governing physics behind the interaction of multiple fuel injections, ignition, and combustion behavior of multiple-injections in diesel engines. Multiple-injection is a widely adopted operating strategy applied in modern compression-ignition engines, which involves various combinations of small pre-injections and post-injections of fuel before and after the main injection and splitting the main injection into multiple smaller injections. This strategy has been conclusively shown to improve fuel economy in diesel engines while achieving simultaneous NOX, soot, and combustion noise reduction - in addition to a reduction in the emissions of unburned hydrocarbons (UHC) and CO by preventing fuel wetting and flame quenching at the piston wall.
X