Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Analysis and Optimization of Heat Transfer for FSAE Radiator for Various Sidepod Designs

2023-11-10
2023-28-0055
Heat transfer optimization is a crucial aspect of the design process for Formula Student race cars, particularly for the radiator, usually housed in a side pod. For the car to operate at peak performance, a well-designed radiator-sidepod system is essential such that it can dissipate heat generated by the engine faster, for the car to run in optimal performance. Testing the car physically for various radiator-sidepod design iterations is a very difficult task, also considering the costs to manufacture the radiator-sidepod setup. The objective of this study is to develop a comprehensive methodology for analysing heat transfer through radiator setup using Computational Fluid Dynamics and to validate it through experimental investigations, to enhance performance and efficiency of the radiator setup. It further explains how to find out its heat transfer efficiency, and to choose the right radiator-sidepod setup, giving optimal performance.
Technical Paper

CFD Analysis of Fuel Tank to Reduce Liquid Sloshing

2023-11-10
2023-28-0084
This paper demonstrates the sloshing phenomena of a cylindrical tank with and without baffles. The main objective of this study is to design baffles of different configurations to reduce sloshing in a cylindrical tank partially filled with gasoil-liquid subjected to only longitudinal acceleration and deceleration. Two different baffle designs have been introduced in the present study. A 3-D transient analysis of a cylindrical tank was carried out using ANSYS-FLUENT with and without baffles. Volume of Fluid (VOF) method was used to study the free surface profile of the fluid in the considered tank. Pressure distribution, velocity distribution and force distribution have been studied in the present study. It has been observed that the new design of baffle was able to reduce sloshing effectively.
Technical Paper

Battery Thermal Management of Lithium Prismatic Cell Battery by Using Different Coolants

2023-08-28
2023-01-5059
Lithium (Li)-based batteries have wide applications in the everyday gadgets. Li-based batteries have prominent usage in the automotive sector. All the major OEMs for manufacturing hybrid electric vehicles (HEVs) and electric vehicles (EVs) use only Li batteries and are still going to continue for the next decades. However, during the operation of these batteries, they are susceptible to environmental and battery factors. The amount of charge currently taken in or out influences the internal resistance and temperature of the battery. Therefore, the amount of heat generated by the Li-ion batteries during operation is critical for designing a cost-effective and efficient thermal management system (TMS) for HEVs and EVs.
Technical Paper

Influence of Various Parameters of Turning Low Carbon Steel with M2 HSS Tool Using Minimum Quantity Lubrication

2022-12-23
2022-28-0533
Turning is a widely used manufacturing process in mechanical machining industries, while the cost associated with this process is high due to the cost involved in changing tools or tool regrinding. All the parameters of turning, like feed rate, cutting speed, and depth of cut, substantially impact the tool wear, which subsequently reduces tool life. Cooling methods like flooding, Minimum Quantity Lubrication (MQL), etc., are incorporated to minimise these effects on the tool and workpiece interface. When using these cooling techniques, the process parameters involved play vital roles in increasing the effectiveness. This paper focuses on the effects of machining parameters on the tool and the workpiece quality. Experiments were conducted to study the impact of various input parameters of the turning process on the tool tip temperature, cutting forces, and tool wear, ultimately affecting the tool's life.
Technical Paper

Computational Analysis of Pitch Sensitivity for a Concept Race Car

2022-10-06
2022-01-5065
The present numerical study investigates the design and analysis of a concept model Le Mans Grand Touring Prototype (LMGTP) car. Through analysis, aerodynamic pitch sensitivity and related factors are found to be detrimental to the straight-line stability of these high-speed race cars. Simulations are carried out on a commercial Computational Fluid Dynamics (CFD) tool for varying pitch angles of the car from −1° to +2.5°. For each pitch angle, steady-state pressure contours, velocity contours, and streamlines are presented. Additionally, coefficients and force values of lift and drag are calculated with the k-omega turbulence model implemented. Obtained numerical results are validated via Ahmed Body studies reported in the literature, and an average error deviation of 1.013% is exhibited. It is observed that lift force at the front axle increases with increasing pitch angles, leading to reduced pitch stability.
Technical Paper

Cross-Flow Radiator Design Using CFD for FSAE Car Cooling System and Its Experimental Validation Using the GEMS Data Acquisition System

2022-03-29
2022-01-0374
The cross flow design of a radiator and its heat transfer and temperature drop was simulated then validated by using a data acquisition system during both static and dynamic running conditions of a Formula SAE car. The data acquisition system simulated and validated the radiator's cross flow design and heat transfer, as well as the temperature drop, under static and dynamic conditions in a car. The optimal radiator design determines the engine's operating temperature and the desired temperature drop gain through proper design of the inner core, number of fins and tubes, and radiator material. The purpose of a properly designed radiator is to prevent the combustion engine from heating up above its operating temperature [1]. The radiator's design is based on the operating temperature of the CBR 600RR engine. The highest temperature recorded was around 105°C, and in the worst case scenario, it can reach 110°C.
Technical Paper

Methodology to Simulate Adsorption and Desorption Phenomena of Gasoline Fuel Vapour in Activated-Carbon Canister to Meet Post-EU6 and US EPA Global Emission Norms

2021-09-15
2021-28-0131
This paper covers the mathematical modeling of governing equations for the coupled heat and mass transfer phenomena during adsorption and desorption. Also the main focus is given on the methodology for numerical simulation for solving these partial differential equations for carbon canister. A comprehensive literature review is presented to summarize the target requirements of allowed evaporative emission level of gasoline vapour in grams per day based on global standards like, EU6, EPA stage II enhanced, CARB LEVII, PZEV and SULEV. In order to meet these stringent emission norms, presence of carbon canister is mandatory. The simulation results are compared for the gasoline vehicle application at various climatic temperature conditions in India, in which the canister sizing vs allowable emission targets are summarized.
Technical Paper

Determination of Optimal Gear Ratio of BAJA SAE All-Terrain Vehicle

2021-02-25
2021-01-5033
The final drivetrain ratio is an essential part of a vehicle. It is responsible for providing the desired torque to overcome obstacles while maintaining the speed and acceleration of a vehicle. A vehicle must have an optimum gear ratio to obtain the desired velocity and acceleration. To achieve this, four different approaches were used considering the input parameters of a BAJA All-Terrain Vehicle (ATV). The traction received from the ground is calculated and plotted against velocity on different terrains. Further, a drivetrain was modeled in Simulink to obtain different parameters like vehicle speed, acceleration, and wheel slip. A range of gear ratios was obtained by following a similar trend of vehicle parameters that were best suited for improving vehicle performance. Graphs were plotted to compare the effect of various vehicle parameters, and an optimum gear ratio was obtained.
Technical Paper

Braking System for ATV

2020-10-05
2020-01-1611
Design and simulation analysis of braking system for ATV is carried out with the assistance of Ansys and MATLAB. Heat generated increases the temperature of the disc brake at the rubbing surface resulting in thermal stresses in the components of the braking system. Static, structural, thermal, computational flow dynamics, vibrational & fatigue behavior of ventilated brake disc rotor, hub and upright are analyzed. Stainless Steel, SS-410 material configuration has been considered for disc brake rotor and results obtained are analyzed in terms of performance, longevity and efficiency. Braking efficiency and stopping distance curve are analyzed from their characteristics plot. Vibrational behavior, structural behavior, thermal behavior, performance efficiency, flow behavior of ventilated disc brake rotor can be easily depicted with respect to bump and droop during acceleration, high climb and maneuverability. Ventilated disc brake Rotor with outer diameter of 220 mm is used.
Technical Paper

Topology Optimisation of Brake Caliper

2020-10-05
2020-01-1620
The objective of the research is to develop a lightweight yet stiff, 2 piston fixed brake caliper which can be used in formula student race car. To make a race car, its components need to be lighter. To stop a car with minimum stopping distance, it needs to have a sophisticated braking system with well-designed components. The designing of the caliper is carried out on the Altair Inspire software. The topology optimisation algorithm is used to minimise the weight of the caliper without compromising the stiffness. The structural analysis is also carried out on the Altair Inspire. The caliper is also tested for fatigue failure using Ansys.
Technical Paper

Noise Absorption Behavior of Aluminum Honeycomb Composite

2020-09-25
2020-28-0453
Natural fibers are one of the major ways to improve environmental pollution. In this study experimental investigation and simulation of honeycomb filled with cotton fabric, wood dust and polyurethane were carried out. This study determines the potential use of cotton fabric, wood dust as good sound absorbers. Automotive industries are looking forward to materials that have good acoustic properties, lightweight, strong and economical. This study provides a better understanding of sound-absorbing material with other mechanical properties. With simulation and experimental results, validation of works provides a wider industrial application for the interior of automotive industries including marine, aviation, railway industry and many more.
Technical Paper

Optical Surface Roughness Evaluation of Ground Specimens Using Speckle Line Images

2020-09-25
2020-28-0514
A well-established method of surface roughness measurement is of stylus-based. The filtering effect of the stylus tip is the major lacuna of the process. So in the present study, a vision based 100% inspection procedure is proposed for the characterization of ground specimens. A CMOS camera, and monochromatic line laser source were used for capturing speckle line images of the ground specimens. Signal vectors were generated from each of the surface images of ground specimens using MATLAB software. On the other hand the roughness of the ground specimens, particularly the Arithmetic roughness average (Ra) & Arithmetic mean slope (Rda) were computed using a stylus instrument. It was found that standard deviation and kurtosis having good correlation with the image pixel intensity of the signal vectors with the correlation coefficient of 0.96 & 0.89 for Ra and 0.86 & 0.82 for Rda respectively.
Technical Paper

Investigations on Computational Meshing Techniques of FSAE Space Frame Chassis

2020-09-02
2020-01-5081
The FSAE is a world-renowned competition, in which students from across the globe compete against each other. The chassis is the main framework of the car, which is inherently responsible for accommodating all the components. The chassis is broadly classified into two types—monocoque and spaceframe. The FSAE chassis is of spaceframe type. The chassis also provides structural rigidity to the body of the car. It was observed through literature study that very minimal amount of research has been done on analyzing and validating the chassis by applying the different meshing techniques, namely 1D, 2D, and 3D. The mesh quality is very essential to obtain precise results and hence, effective methods for creating the mesh have been dealt with in this article. This study is on new investigations on different meshing techniques that can be implemented on an FSAE chassis.
Technical Paper

A Comparative Study to Assess the Effect and Cause of Ride Quality and Comfort of Passenger Vehicle with Subjective Correlation

2019-11-21
2019-28-2410
Vehicle Dynamics testing has its importance in the fields of benchmarking and the validation of mathematical models built in order to predict the ride performance of the vehicle. The importance of enhancing the ride comfort is increasing day by day in present day scenario because of the long hours of driving experience. In presented work, the ride testing is done for two hatchback vehicles on highway conditions in order to compare the ride quality and ride comfort. The parameters like Vibration Dose Value, SEAT factor and Ride Diagram values are used to evaluate the ride comfort. After successful evaluation of the vibration levels affecting the ride comfort of the driver as well as the passenger the next major task is to identify and study the cause of the discomfort. The cause of the discomfort is studied and analyzed in terms of the complex motion of the vehicle. Vehicle motions like choppiness produces higher levels of discomfort as compared to the vertical movement of the vehicle.
Technical Paper

Sensor Perception and Motion Planning for an Autonomous Material Handling Vehicle

2019-10-22
2019-01-2611
The ground mobile robotics study is structured on the two pivotal members namely Sensor Perception and Motion Planning. Sensor perception or Exteroception comprises the ability of measurement of the layout of the environment relative to vehicle's frame of reference which is a necessity for the implementation of safe navigation towards the goal destination in an unstructured environment. Environment scanning has played a significant role in mobile robots application to investigate the unexplored environment in the sector of defence while transporting and handling material in warehouse and hospitals. Motion Planning is a conjunction of analyzing the sensor's information while being able to plan the route from starting point to the target destination. In this paper, a 3600 2-D LiDAR is used to capture the spatial information of the surrounding, the scanning results are presented in a local map and global map.
Technical Paper

Investigation of Machinability Characteristics and Chip Morphology on Inconel 718: Dry and MQL

2019-10-11
2019-28-0066
Inconel 718 has excellent material properties, corrosion, and oxidation property among the nickel based superalloy. This property makes it suitable for producing components operating under extreme environments subjected to pressure and heat. The present study aims to examine the machinability comparison under dry and MQL turning of Inconel 718. The secondary aim is to report the sustainable machining on Inconel 718. Dry and MQL (Minimum Quantity Lubrication) experiments are carried out on Inconel 718 alloy based on Taguchi’s designed L16 orthogonal array. The cutting tools are an advanced coated cutting tool and uncoated tool. The levels of turning parameters are varied at 70, 120, 170 and 220 m/min of turning speed, 0.1, 0.15, 0.2 and 0.25 mm/rev of feed rate and 0.3, 0.4, 0.5 and 0.6 mm of cutting depth. The cutting forces, surface roughness, flank wear, and chip morphology are taken for the current investigation. The factor effect on output responses is studied using 2D plots.
Technical Paper

Investigation of Machinability Characteristics on Turning of Nimonic 90A Using Al2O3 and CNT Nanoparticle in Groundnut Oil

2019-10-11
2019-28-0072
Nimonic 90A alloy is a nickel-chromium-cobalt alloy and found as a potential material for turbine blades, discs, forgings, a ring section, and hot-working tools. This paper presents the effect of concentration along with cutting speed and feed rate on Fz: cutting force, Ra: surface roughness and Vba: tool wear with the application of two different nanofluids (NFS) on turning of Nimonic 90A by TiAlN PVD carbide cutting inserts. The nanoparticles suspended in oil taken for present investigation are nAl2O3, nCNT, and groundnut oil. The Taguchi L9 orthogonal array and derringer’s desirability response surface has been employed for parameter design and optimal search. 3D surface plots, factor effect plots, Taguchi S/N, and variance tests are used to study the effect of concentration on the machining performance of Nimonic 90A. The statistical analysis revealed % concentration for nCNT and cutting speed for nAl2O3 are found as an influenced parameter on performance characteristics.
Technical Paper

Surface Modification of Aluminium Alloy 5083 Reinforced with Cr2O3/TiO2 by Friction Stir Process

2019-10-11
2019-28-0179
The surface properties have a vital role in the overall performance of the parts like brake shoe pad and other frame system. The mechanical and residual stress measurements of aluminium alloy 5083 were investigated on friction stir processed plates using the reinforcements of chromium oxide (Cr2O3) and titanium dioxide (TiO2) separately as well as combination of these powders. A comparative study was made to analyze the effects of reinforcements, tool type (cylindrical and threaded), parameters and the volume fraction of the reinforcements. The mechanical properties such as surface hardness and residual stress of the friction stir processed specimens were investigated. The experimental results shows that there was a significant increase in surface hardness (118 HRC) as well as a decrease in residual stress compare to the base metal. This study also reveals that the threaded tool with a reinforcement of Cr2O3 and TiO2 reflected better mechanical properties than the cylindrical tool.
Technical Paper

Vision Based Surface Roughness Characterization of Flat Surfaces Machined with EDM

2019-10-11
2019-28-0148
Surface roughness measurement is an important one in any manufacturing next to dimensions. In this investigation, a vision system and image processing tools were used to develop reliable surface roughness characterization technique for Electrical Discharge Machined surfaces. A CMOS camera with red LED light source were used for capturing images of EDMed surfaces. A separate signal vector generated for all the images from its image pixel intensity matrices. The mean, skewness and kurtosis were obtained from the signal vector. The mean, skewness and kurtosis of the images signal vector correlates very well with the stylus measured hybrid roughness parameters Rda and Rdq. Hence the technique may be preferred for online surface roughness characterization of Electrical Discharge Machined (EDMed) surfaces.
Technical Paper

Experimental Study on Tool Wear and Cutting Temperature during Machining of Nimonic C-263 and Waspaloy Based on Taguchi Method and Response Surface Methodology

2019-10-11
2019-28-0144
Nickel based materials of Nimonic C-263 and Waspaloy are used nowadays for aerospace applications owing to its superior strength properties that are maintained at a higher temperature. Tool wear and cutting temperature in the vicinity of cutting edge are two essential machinability characteristics for any cutting tool. In this regard, this study is pursued to examine the influence of factors on measuring of tool wear (Vba) and cutting temperature (Ts) during dry machining of two alloys studied experimentally based on Taguchi method and response surface methodology. Taguchi’s L16 orthogonal array is used to design the experiment and a PVD (TiAlN), CVD (TiN/Al2O3/TiCN) coated carbide inserts are used on turning of two alloys. The factor effect on output responses are studied using analysis of variance, empirical models, and responses surface 3D plots. To minimize the response and to convert into one single optimum level, responses surface desirability function approach is applied.
X