Refine Your Search

Topic

Author

Search Results

Technical Paper

Hybrid Electric Two-Wheeled Vehicle Fitted with an EVT System (Electrical Variable Transmission System)

2023-10-24
2023-01-1853
In recent years, global warming, depletion of fossil fuels, and reducing pollution have become increasingly prominent issues, resulting in demand for environmentally-friendly two-wheeled vehicles capable of reducing CO2 emissions. However, it remains necessary to meet customers’ expectations by providing smaller drivetrains, lighter vehicles, and support for long-distance riding, among other characteristics. In the face of this situation, hybrid electric vehicle (HEV) systems are considered to be the most realistic method for creating environmentally-friendly powertrains and are widely used. This research introduces a hybrid electric two-wheeled vehicle fitted with an electrical variable transmission (EVT) system, a completely new type of electrical transmission that meets the aforementioned needs, achieving enhanced fuel efficiency with a compact drivetrain. The EVT system comprises double rotors installed inside the stator.
Technical Paper

Development of Lightweight Oil Catch Tank Produced by Laser Powder Bed Fusion

2023-10-24
2023-01-1807
Laser powder bed fusion is one of the metal additive manufacturing technologies, so-called 3D printing. It has attracted great attentions due to high geometrical flexibility and remarkable metallurgical characteristics. An oil catch tank has been widely used in automotive industries for filtering oil vapors or carbon sludge from blow-by gas as a conventional usage. A pneumatic valve system mainly adopted to high-performance engines is also a potential application of it because undesirable oil infiltrates into air springs during engine operation, resulting in an excess spring pressure. This work focused on developing a lightweight oil catch tank which can be applied to a pneumatic valve system by taking advantage of additive manufacturing techniques. Al-Mg-Sc alloy powder with high tensile strength as well as high ductility were used under the consideration of specific strength, printability and availability.
Technical Paper

Effect of Impurity Elements in Recycled Ingots on Seizure Properties of Die-Cast Cylinders made of Hypereutectic Al-Si Alloy

2023-10-24
2023-01-1806
In recent years, efforts to reduce CO2 emissions (carbon neutrality) have accelerated worldwide. In the aluminum manufacturing industry, CO2 emissions can be reduced by switching the raw materials of choice; from virgin ingots to recycled ingots. However, the possible characteristic change accompanying the usage of impurity-ridden recycled ingots severely limits its applications, which also limits its potential contribution to carbon neutrality. Determining how impurity elements present in recycled ingots can affect the function of manufactured components is a necessary first step towards expanding the usage of recycled ingots. In this study, we aimed to apply recycled ingots to the monolithic cylinder made of hypereutectic Al-Si alloy and investigated how impurity elements in recycled ingots affect properties (especially seizure characteristic). Die-cast cylinders using virgin and recycled ingots were manufactured and their properties were investigated.
Technical Paper

Analytical Study on Involvement of Temperature in Friction and Scuffing for Engine Tribo-Components

2023-09-29
2023-32-0115
Regarding the solution for various issues on engine tribology, in order to understand the involvement of temperature in the friction and scuffing under the mixed and/or boundary lubrication regime, the two cases of piston ring & cylinder liner and cam & tappet were analytically studied. The friction between sliding interfaces is composed of four shear stresses from the viscous oil-films, the adsorbed oil molecules, the tribofilms due to oil additives, and the true metal contacts on surface asperities. Since all the shear stress have exponential temperature dependences, the relationship between the frictional shear stress and temperature is assumed to be expressed by the Arrhenius equation. Through analyzing friction data measured in laboratory tests conducted under the same temperature and sliding conditions as during the break-in of engines, various levels of temperature involvement were clarified.
Journal Article

Effects of Surface Compound Layer on Bending Fatigue Strength of Nitrided Chromium-Molybdenum Steel

2020-01-24
2019-32-0504
Carburized and quenched materials with high fatigue strength are often used for motorcycle engine parts. Nitrided materials exhibit less deformation during heat treatment than carburized and quenched materials, so if the same or higher fatigue strength can be achieved with nitrided materials as with carburized and quenched materials, the geometric precision of parts can be increased and we can reduce engine noise as well as power loss. When the fatigue strengths of a nitrided material with its compound layer surface put into γ’ phase through nitriding potential control (hereafter, G), and a nitrided material put into ε phase (hereafter, E) were measured, the results showed the fatigue strength of the G to be about 11% higher than that of carburized and quenched materials. It was inferred that the strength of the compound layer determines fatigue strength.
Technical Paper

Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

2020-01-24
2019-32-0552
Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized.
Technical Paper

Plasma Temperature of Spark Discharge in a Lean-burn Spark-ignition Engine Using a Time Series of Spectra Measurements

2019-12-19
2019-01-2158
In this research, a spark plug with an optical fiber has been developed to obtain the emission spectra from the spark discharge and flame kernel. This developed spark plug with an optical fiber can obtain the time series of emission spectra from the spark discharge and Initial flame kernel in the real spark-ignition engine using EMCCD spectrometer. The plasma vibrational temperature of the spark discharge can be measured using the emission spectra from the electrically excited CN violet band system. The plasma of the spark discharge and gas rotational temperature of the initial flame kernel can be also measured using emission spectra from OH* radicals (P and R branches). The plasma temperature of the spark discharge was almost 8,000 K and the gas temperature of the Initial flame kernel approached that of the adiabatic flame temperature.
Technical Paper

An Analysis on Cycle-by-cycle Variation and Trace-knock using a Turbulent Combustion Model Considering a Flame Propagation Mechanism

2019-12-19
2019-01-2207
Gasoline engines have the trace-knock phenomena induced by the fast combustion which happens a few times during 100 cycles. And that constrains the thermal efficiency improvement due to limiting the ignition timing advance. So the authors have been dedicating a trace-knock simulation so that we could obtain any pieces of information associated with trace-knock characteristics. This simulation consists of a turbulent combustion model, a cycle-by-cycle variation model and a chemical calculation subprogram. In the combustion model, a combustion zone is considered in order to obtain proper turbulent combustion speed through wide range of engine speed. From a cycle-by-cycle variation analysis of an actual gasoline engine, some trace-knock features were detected, and they were involved in the cycle-by-cycle variation model. And a reduced elementary reaction model of gasoline PRF (primary reference fuel) was customized to the knocking prediction, and it was used in the chemical calculation.
Technical Paper

Unsteady High-Speed Flow in the Tank for Fuel Cell Vehicle on Filling the Gas

2019-12-19
2019-01-2262
In the high-pressure tank for Fuel Cell Vehicle (FCV), the shock wave might be occurs during filling of the hydrogen gas because of the high-pressure ratio. Therefore, the temperature sensor in the high-pressure tank might be affected by the shock wave. In this work, we investigated the effect of unsteady flow including shock wave by visualizing around the exit of filling pipe in the Schlieren method. As the result of visualizing the filling pipe exit, it confirmed that pressure wave following the barrel shock wave occurred at high pressure ratio.
Technical Paper

Dynamic Simulation Software for Prediction of Hydrogen Temperature and Pressure during Fueling Process

2018-04-03
2018-01-1304
In this study, in order to relax the pre-cooling regulations at hydrogen fueling stations, we develop a software algorithm to simulate an actual hydrogen fueling process to Fuel Cell Vehicle (FCV) tanks. The simulation model in the software consists of the same filling equipment found at an actual hydrogen fueling station. Additionally, the same supply conditions (pre-cooling temperature, pressure and mass flow rate) as at a hydrogen fueling station were set to the simulation model. Based on the supply conditions, the software simulates the temperature and pressure of hydrogen in each part of filling equipment. In order to verify the accuracy of the software, we compare the temperature and pressure simulated at each stage of the filling process with experimental data. We show that by using the software it is possible to accurately calculate the hydrogen temperature and pressure at each point during the fueling process.
Technical Paper

Development of Motorcycle Engine Starting System Simulation Considering Air-Fuel Ratio Control

2017-11-05
2017-32-0045
Recently the response of the engine speed at starting has more importance than ever for quick start satisfying rider’s needs, as well as exhaust emissions. We have developed a simulation for studying engine and starter specifications, engine control algorithm and other engine control parameters. This system can be utilized to realize appropriate starting time by considering air-fuel ratio under various conditions. This paper addresses what are taken account of in our method. Examples applying this to a conventional motorcycle engine are shown.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Journal Article

Study on Lubricating Oil Consumption from Evaporation of Oil-Film on Cylinder Wall for Diesel Engine

2017-03-28
2017-01-0883
It is effective in engine fuel economy to reduce the viscous friction by applying lubricating oil with low viscosity. The lower viscosity such as SAE0W20, however, increase lubricating oil consumption, LOC. In addition, it has become urgent to reduce the LOC because the emission of the sulfide ash, phosphorous and sulfur contents degrades the diesel particulate filter and the de-NOx catalyst, in addition to which the emission of metal oxide contents from oil additives can cause pre-ignition in highly supercharged spark ignition engines. In order to clarify the LOC mechanism of low viscosity oils, the LOC rates were measured with a supercharged diesel engine under various operating conditions when lubricated with SAE30 or SAE10W30 test oil, and the resulting data have been compared with the rates of the evaporation from the oil-film on the cylinder wall, LOE, as predicted by the devised analysis method for multi-species component oils.
Journal Article

Development of Fracture-Split Connecting Rods Made of Titanium Alloy for Use on Supersport Motorcycles

2015-11-17
2015-32-0830
A connecting rod made of titanium alloy is effective for lower fuel consumption and higher power output comparing to a steel one because the titanium connecting rod enables to reduce the weight of both of reciprocating and rotating parts in an entire engine substantially. But up to now, it has been adopted only to expensive and small-lot production models because a material cost is high, a processing is difficult and a wear on a sliding area should be prevented. In order to adopt the titanium connecting rods into a more types of motorcycles, appropriate materials, processing methods and surface treatment were considered. Hot forging process was applied not only to reduce a machining volume but also to enhance a material strength and stiffness. And the fracture-splitting (FS) method for the big-end of the titanium connecting rod was put into a practical use.
Technical Paper

Influences of Turbulence Scale on Development of Spherically Propagating Flame under High EGR Conditions

2015-09-01
2015-01-1868
EGR (Exhaust gas recirculation) can reduce the pumping loss and improve the thermal efficiency of spark ignition engines. The techniques for combustion enhancement under high EGR rate condition has been required for further improvement of the thermal efficiency. In order to develop the technique of combustion enhancement by turbulence, the influences of turbulence scale on combustion properties, such as probability of flame propagation, EGR limit of flame propagation, flame quenching and combustion duration were investigated under the condition of same turbulence intensity. Experiments were carried out for stoichiometric spherically propagating turbulent i-C8H18/Air/N2 flames using a constant volume vessel. It was clarified that all of these combustion properties were affected by the turbulence scale. The development of spherically propagating turbulent flame during flame propagation was affected by the turbulence scale.
Technical Paper

Simultaneous Observation of Combustion in Optical Rotary Engine by Bottom View and Side View

2015-09-01
2015-01-1891
Combustion behavior in Rotary Engine (RE) is quite different from that in conventional reciprocating engines. Therefore, it is important to observe the combustion in RE. In the previous studies, an optical RE was developed, which enabled the observation of the flame propagation in the rotor rotating direction (side view). In the present study, modification was made to the optical RE so that the observation of the flame propagation in the rotor width direction (bottom view) became possible. By using two high-speed cameras, the combustion in RE was observed by bottom view and side view simultaneously. Consequently, it was found that the flame propagation in the rotor width direction is also important for better engine performance as well as that in the rotor rotating direction.
Journal Article

Improvement of the Startability with Reverse Stroke Intake Devices for a Motorcycle Engine

2014-11-11
2014-32-0107
This paper proposes a novel engine starter system composed of a small-power electric motor and a simple mechanical valve train. The system makes it possible to design more efficient starters than conventional systems, and it is especially effective to restart engines equipped with idling stop systems. Recently, several idling stop systems, having intelligent start-up functions and highly-efficient generate capabilities have been proposed for motorcycles. One of challenges of the idling stop systems is the downsizing of electric motors for starting-up. However, there are many limitations to downsize the electric motors in the conventional idling stop systems, since the systems utilize the forward-rotational torque of the electric motors to compress the air-fuel mixture gas in the cylinders. Our studies exceeded the limitations of downsizing the electric motors by mainly using the engine combustion energy instead of the electric energy to go over the first compression top dead center.
Journal Article

Friction Measurement of Al-17%Si Monolithic Cylinder with using Newly Developed Floating Liner Device

2014-11-11
2014-32-0052
The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. A piston-cylinder system plays an important role for the reduction of an engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. To meet the above-mentioned demand, frictional waveforms were measured with using the renewed floating liner device. In the newly developed floating liner device, an actual cylinder block itself was used as a test specimen. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17%Si alloy using a high pressure die casting process. The combined piston was a light weight forged piston and a DLC coated piston ring was used. For the measurement, 110cc air cooled single cylinder engine was used.
Journal Article

The Effect of Surface Morphology of Cylinder Bore Surface on Anti-Scuffing Property made by High Pressure Die-Casting Process using Hyper-Eutectic Al-Si Alloy

2013-10-15
2013-32-9046
A monolithic type aluminum (Al) cylinder made of hypereutectic Aluminum-Silicon alloy has been widely used for motorcycle applications. It has a lightweight structure and a superior cooling ability owing to its material property and surface finishing. Usually the cylinder bore surface of the monolithic type Al cylinder is finished by an etching process or a honing process in order to expose silicon (Si) particles from aluminum (Al) matrix for the improvement of the tribological properties. The morphology of the cylinder bore surface including the exposure of Si particles is supposed to make an important effect on its tribological properties, especially on the anti-scuffing property. In this research, the anti-scuffing property of three kinds of cylinder bore finishing, an etched surface, a Si exposure honed surface and a conventional plateau honed surface is evaluated with using a reciprocated type wear tester. The experimental results are analyzed by using Weibull analysis.
Journal Article

Torque Control of Rear Wheel by Using Inverse Dynamics of Rubber/Aramid Belt Continuous Variable Transmission

2013-10-15
2013-32-9042
This paper concerns a torque control of a rear wheel of a motorcycle equipped with a rubber/aramid belt electronically-controlled continuous variable transmission where a primary sheave position is controlled by an electric motor. In particular, the paper discusses a method to calculate a required engine torque and a required primary sheave position, given reference values of a rear-wheel torque and an engine rotational velocity. The method forms a foundation of a hierarchized traction control where a higher control layer decides an optimal motorcycle motion (rear-wheel torque and engine rotational velocity) and a lower control layer realizes the motion by actuators (engine torque and primary sheave position). Difficulties of the control are due to large mechanical compliance of the rubber/aramid belt, which leads to an inevitable lag from the primary sheave position to a speed reduction ratio.
X