Refine Your Search

Search Results

Technical Paper

High Cell Density Flow Through Substrate for New Regulations

2023-04-11
2023-01-0359
This paper, written in collaboration with Ford, evaluates the effectiveness of higher cell density combined with higher porosity, lower thermal mass substrates for emission control capability on a customized, RDE (Real Driving Emissions)-type of test cycle run on a chassis dynamometer using a gasoline passenger car fitted with a three-way catalyst (TWC) system. Cold-start emissions contribute most of the emissions control challenge, especially in the case of a very rigorous cold-start. The majority of tailpipe emissions occur during the first 30 seconds of the drive cycle. For the early engine startup phase, higher porosity substrates are developed as one part of the solution. In addition, further emission improvement is expected by increasing the specific surface area (GSA) of the substrate. This test was designed specifically to stress the cold start performance of the catalyst by using a short, 5 second idle time preceding an aggressive, high exhaust mass flowrate drive cycle.
Technical Paper

The Development of Low Temperature Three-Way Catalysts for High Efficiency Gasoline Engines of the Future: Part II

2018-04-03
2018-01-0939
It is anticipated that future gasoline engines will have improved mechanical efficiency and consequently lower exhaust temperatures at low load conditions, although the exhaust temperatures at high load conditions are expected to remain the same or even increase due to the increasing use of downsized turbocharged engines. In 2014, a collaborative project was initiated at Ford Motor Company, Oak Ridge National Lab, and the University of Michigan to develop three-way catalysts with improved performance at low temperatures while maintaining the durability of current TWCs. This project is funded by the U.S. Department of Energy and is intended to show progress toward the USDRIVE target of 90% conversion of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) at 150 °C after high mileage aging. The testing protocols specified by the USDRIVE ACEC team for stoichiometric S-GDI engines were utilized during the evaluation of experimental catalysts at all three facilities.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
Journal Article

Analysis of High Mileage Gasoline Exhaust Particle Filters

2016-04-05
2016-01-0941
The purpose of this work was to examine gasoline particle filters (GPFs) at high mileages. Soot levels for gasoline direct injection (GDI) engines are much lower than diesel engines; however, noncombustible material (ash) can cause increased backpressure, reduced power, and lower fuel economy. In this study, a post mortem was completed of two GPFs, one at 130,000 mi and the other at 150,000 mi, from two production 3.5L turbocharged GDI vehicles. The GPFs were ceramic wall-flow filters containing three-way catalytic washcoat and located downstream of conventional three-way catalysts. The oil consumption was measured to be approaching 23,000 mpqt for one vehicle and 30,000 mpqt for the other. The ash contained Ca, P, Zn, S, Fe, and catalytic washcoat. Approximately 50 wt% of the collected ash was non-lubricant derived. The filter capture efficiency of lubricant-derived ash was about 50% and the non-lubricant metal (mostly Fe) deposition rate was 0.9 to 1.2 g per 10,000 mi.
Journal Article

Ammonia Loading Detection of Zeolite SCR Catalysts using a Radio Frequency based Method

2015-04-14
2015-01-0986
Ammonia adsorption on the catalyst surface is a crucial step in the selective catalytic reduction of nitrogen oxides over zeolites with NH3 as the reducing agent. In this study, two small pore zeolites with chabazite frameworks, H-SSZ-13 and Cu exchanged SSZ-13, are examined. Adsorption of NH3 on the zeolite causes changing electrical properties of the material. They can be detected by a radio frequency based technique. We have found that with this method it is possible to determine the amount of adsorbed NH3 on these catalysts, examining both the influences of temperature and NH3/NO feed gas ratio. At constant temperature, a fairly linear correlation between the resonance frequency and the amount of adsorbed ammonia was observed. Furthermore, this method also allows differentiation between some of the NH3 adsorption sites.
Journal Article

TWC+LNT/SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1006
A laboratory study was performed to assess the potential capability of TWC+LNT/SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. It was assumed that the exhaust system would need a close-coupled (CC) TWC, an underbody (U/B) TWC, and a third U/B LNT/SCR converter to satisfy the emission standards on the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. Sizing studies were performed to determine the minimum LNT/SCR volume needed to satisfy the NOx target. The ability of the TWC to oxidize the HC during rich operation through steam reforming was crucial for satisfying the HC target.
Journal Article

Passive TWC+SCR Systems for Satisfying Tier 2, Bin 2 Emission Standards on Lean-Burn Gasoline Engines

2015-04-14
2015-01-1004
A laboratory study was performed to assess the potential capability of passive TWC+SCR systems to satisfy the Tier 2, Bin 2 emission standards for lean-burn gasoline applications. In this system, the TWC generates the NH3 for the SCR catalyst from the feedgas NOx during rich operation. Therefore, this approach benefits from high feedgas NOx during rich operation to generate high levels of NH3 quickly and low feedgas NOx during lean operation for a low rate of NH3 consumption. It was assumed that the exhaust system needed to include a close-coupled (CC) TWC, an underbody (U/B) TWC, and an U/B SCR converter to satisfy the emission standards during the FTP and US06 tests while allowing lean operation for improved fuel economy during select driving conditions. Target levels for HC, CO, and NOx during lean/rich cycling were established. With a 30 s lean/10 s rich cycle and 200 ppm NO lean, 1500 ppm NO rich and the equivalent of 3.3 L of SCR volume were required to satisfy the NOx target.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Technical Paper

The Development of Advanced Urea-SCR Systems for Tier 2 Bin 5 and Beyond Diesel Vehicles

2010-04-12
2010-01-1183
An advanced diesel aftertreatment system utilizing Selective Catalytic Reduction (SCR) with urea for lean nitrogen oxides (NOx) control was tested on a 2.7L V6 Land Rover vehicle to demonstrate the capability of achieving Tier 2 Bin 5 and lower emission standards for light-duty trucks. SCR washcoat was applied to a diesel particulate filter (DPF) to perform NOx and particulate reduction simultaneously. Advanced SCR systems employed both traditional SCR catalysts and SCR-coated filters (SCRF) to improve the NOx reduction efficiency. The engine-out NOx level was adjusted by modifying the EGR (Exhaust Gas Recirculation) calibration. Cold start NOx performance was improved by SCR warm-up strategy and urea over injection. This study showed the advanced SCR system could tolerate higher NH₃ storage in the SCR catalyst, resulting in overall higher NOx conversion on the FTP-75 test cycle.
Journal Article

Post Mortem of an Aged Tier 2 Light-Duty Diesel Truck Aftertreatment System

2009-11-02
2009-01-2711
A 2005 prototype diesel aftertreatment system consisting of diesel oxidation catalysts (DOC), Cu/zeolite Selective Catalytic Reduction (SCR) catalyst, and Catalyzed Diesel Particulate Filter (CDPF) was aged to an equivalent of 120k mi on an engine dynamometer using an aging cycle that incorporated both city and highway driving modes. The program demonstrated durable reduction in particulate matter (PM) and nitrogen oxides (NOx) emissions to federal Tier 2 levels on a 6000 lbs light-duty truck application. Very low sulfur diesel fuel (∼15 ppm) enabled lower PM emissions, reduced the fuel penalty associated with the emission control system, and improved long-term system durability. A total of 643 filter regenerations occurred during the aging that raised the entire catalyst system to high temperatures on a regular basis. After testing the aged system on a 6000 lbs light-duty diesel truck, a post mortem analysis was completed on core samples taken from the DOC, SCR catalyst, and filter.
Journal Article

Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

2009-11-02
2009-01-2777
Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300°C. These stored HCs inhibit or block NOx-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NOx conversion begins at between 100° and 200°C. When exposure to unburned fuel occurs at higher temperatures (250°-400°C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NOx conversion is inhibited until it is heated to 400°C.
Technical Paper

Laboratory Study to Determine Impact of Na and K Exposure on the Durability of DOC and SCR Catalyst Formulations

2009-11-02
2009-01-2823
A laboratory flow reactor study was utilized to determine the durability impact of alkali metal (Na and K) exposure on three Pt/Pd-based diesel oxidation catalysts (DOC), two vanadium-based selective catalytic reduction (SCR) catalysts, and two Cu/zeolite-based SCR catalysts. All catalyst samples were contaminated by direct deposition of Na or K by an incipient wetness technique. The activity impact on the contaminated DOCs was accomplished by evaluating for changes in CO and HC light-off. The activity impact on the contaminated SCR catalysts was accomplished by evaluating for changes in the Standard SCR Reaction, the Fast SCR Reaction, the Ammonia Oxidation Reaction, and the Ammonia Storage Capacity. Contamination levels of 3.0 wt% Na was found to have a higher negative impact on Pt-based and zeolite containing DOCs for T-50 CO and HC light-off.
Technical Paper

Development of Emission Transfer Functions for Predicting the Deterioration of a Cu-Zeolite SCR Catalyst

2009-04-20
2009-01-1282
Urea selective catalytic reduction (SCR) catalysts have the capability to deliver the high NOx conversion efficiencies required for future emission standards. However, the potential for the occasional over-temperature can lead to the irreversible deactivation of the SCR catalyst. On-board diagnostics (OBD) compliance requires monitoring of the SCR function to make sure it is operating properly. Initially, SCR catalyst performance metrics such as NOx conversion, NH3 oxidation, NH3 storage capacity, and BET surface area are within normal limits. However, these features degrade with high temperature aging. In this work, a laboratory flow reactor was utilized to determine the impact on these performance metrics as a function of aging condition. Upon the completion of a full time-at-temperature durability study, four performance criteria were established to help determine a likely SCR failure.
Technical Paper

Impact of a Cu-zeolite SCR Catalyst on the Performance of a Diesel LNT+SCR System

2009-04-20
2009-01-0285
Advanced Cu-zeolite based SCR (selective catalytic reduction) catalyst technologies were evaluated in a laboratory reactor as a component of a diesel LNT (lean NOx trap) plus in-situ SCR system (i.e., NH3 generation over the LNT vs injection via urea). New-generation LNT formulations, with lower desulfation temperatures and improved durability characteristics relative to previous LNTs, were also evaluated. The combined new-generation LNT+Cu-zeolite SCR systems showed a much wider temperature window of high NOx conversion compared to either LNT catalysts alone or LNT+SCR systems utilizing Fe-zeolite SCR catalysts. The new-generation Cu-zeolite SCR catalysts retained high activity even after repeated exposure to high-temperature rich DeSOx conditions in a laboratory 3-mode aging cycle simulating 120,000 mile vehicle driving.
Technical Paper

Cold Start Performance and Enhanced Thermal Durability of Vanadium SCR Catalysts

2009-04-20
2009-01-0625
For diesel applications, cold start accounts for a large amount of the total NOx emissions during a typical Federal Test Procedure (FTP) for light-duty vehicles and is a key focus for reducing NOx emissions. A common form of diesel NOx aftertreatment is selective catalytic reduction (SCR) technology. For cold start NOx improvement, the SCR catalyst would be best located as the first catalyst in the aftertreatment system; however, engine-out hydrocarbons and no diesel oxidation catalyst (DOC) upstream to generate an exotherm for desulfation can result in degraded SCR catalyst performance. Recent advances in vanadia-based SCR (V-SCR) catalyst technology have shown better low temperature NOx performance and improved thermal durability. Three V-SCR technologies were tested for their thermal durability and low-temperature NOx performance, and after 600°C aging, one technology showed low-temperature performance on par with state-of-the-art copper-zeolite SCR (Cu-SCR) technology.
Technical Paper

The Effects of SO2 and SO3 Poisoning on Cu/Zeolite SCR Catalysts

2009-04-20
2009-01-0898
Copper/zeolite catalysts are the leading urea SCR catalysts for NOx emission treatment in diesel applications. Sulfur poisoning directly impacts the overall SCR performance and is still a durability issue for Cu/zeolite SCR catalysts. Most studies on sulfur poisoning of Cu/zeolite SCR catalysts have been based on SO2 as the poisoning agent. It is important to investigate the relative poisoning effects of SO3, especially for systems with DOCs in front of Cu/zeolite SCR catalysts. It was observed that SCR activity was significantly reduced for samples poisoned by SO3 vs. those poisoned by SO2. The sulfur was released mainly as SO2 for both samples poisoned by SO2 and SO3. The temperatures and the magnitudes of released SO2 peaks however, were very different between the samples poisoned by SO2 vs. SO3. The results indicate that sulfur poisoning by SO2 and SO3 are not equivalent, with different poisoning mechanisms and impacts.
Journal Article

Impact and Prevention of Ultra-Low Contamination of Platinum Group Metals on SCR Catalysts Due to DOC Design

2009-04-20
2009-01-0627
Diesel aftertreatment systems configured with a diesel oxidation catalyst (DOC) upstream of an urea selective catalytic reduction (SCR) catalyst run the risk of precious metal contamination. During active diesel particulate filter (DPF) regeneration events, the DOC bed temperature can reach up to 850°C. Under these conditions, precious metal (especially Pt) can be volatized and then deposited on a downstream SCR catalyst. In this paper, the impact of ultra-low contamination of platinum group metals (PGM) on the SCR catalyst was studied. A method based on precious metal volatilization of a Pt-rich DOC at 850°C and under lean gas conditions was employed to contaminate downstream FeSCR and CuSCR formulations. The contamination resulted in poor NOx conversion (via NOx remake) and excessive N2O formation. The precious metal volatilization method was employed to screen various Pt/Pd based DOCs to avoid contamination of the downstream FeSCR.
Journal Article

Detection, Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts

2008-10-06
2008-01-2488
This paper discusses the poisoning of a selective catalytic reduction (SCR) catalyst by trace levels of platinum originating from an upstream diesel oxidation catalyst (DOC). A diesel aftertreatment system consisting of a DOC, urea based SCR Catalyst and a DPF was aged and evaluated on a 6.4 liter diesel engine dynamometer. The SCR catalyst system consisted of an Fe-zeolite catalyst followed by a Cu-zeolite catalyst. After approximately 400 hours of engine operation at varied exhaust flow rates and temperatures, deactivation of the SCR catalyst was observed. A subsequent detailed investigation revealed that the Cu catalyst was not deactivated and the front half of the Fe-based catalyst showed severe deactivation. The deactivated portion of the catalyst showed high activity of NH3 conversion to NOx and N2O formation. The cause of the deactivation was identified to be the presence of trace Pt contamination.
Journal Article

Sulfur Tolerance and DeSOx Studies on Diesel SCR Catalysts

2008-04-14
2008-01-1023
Base metal/zeolite catalysts, particularly containing copper and iron, are among the leading candidates for treatment of NOx emissions for diesel applications. Even with the use of ultra low sulfur fuel, sulfur poisoning is still a durability issue for base metal/zeolite SCR catalysts. In this study, the impact of sulfur poisoning on SCR activity and the stored sulfur removal effectiveness were investigated on several Cu and Fe/zeolite SCR catalysts after different thermal aging. The impact of sulfur was more significant on the Cu than on Fe/zeolite SCR catalysts for the NOx activity. It was found that the sensitivity of thermal aging status to the sulfur poisoning impact was different. The impact of sulfur on NOx activity changed with thermal aging on some catalysts, while it remained relatively the same for other catalysts. The most thermally durable SCR catalyst was not necessarily the most durable to sulfur poisoning.
Journal Article

Enhanced Durability of a Cu/Zeolite Based SCR Catalyst

2008-04-14
2008-01-1025
Passenger and light duty diesel vehicles will require up to 90% NOx conversion over the Federal Test Procedure (FTP) to meet future Tier 2 Bin 5 standards. This accomplishment is especially challenging for low exhaust temperature applications that mostly operate in the 200 - 350°C temperature regime. Selective catalytic reduction (SCR) catalysts formulated with Cu/zeolites have shown the potential to deliver this level of performance fresh, but their performance can easily deteriorate over time as a result of high temperature thermal deactivation. These high temperature SCR deactivation modes are unavoidable due to the requirements necessary to actively regenerate diesel particulate filters and purge SCRs from sulfur and hydrocarbon contamination. Careful vehicle temperature control of these events is necessary to prevent unintentional thermal damage but not always possible. As a result, there is a need to develop thermally robust SCR catalysts.
X