Refine Your Search

Search Results

Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part III: Development of Transfer Functions

2018-04-03
2018-01-1444
An understanding of stiffness characteristics of different body regions, such as thorax, abdomen and pelvis of ES-2re and SID-IIs dummies under controlled laboratory test conditions is essential for development of both compatible performance targets for countermeasures and occupant protection strategies to meet the recently updated FMVSS214, LINCAP and IIHS Dynamic Side Impact Test requirements. The primary purpose of this study is to determine the transfer functions between the ES-2re and SID-IIs dummies for different body regions under identical test conditions using flat rigid wall sled tests. The experimental set-up consists of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and femur/knee impacting a stationary dummy seated on a rigid low friction seat at a pre-determined velocity.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs – Part II: SID-IIs

2018-04-03
2018-01-1448
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Determination of Impact Responses of ES-2re and SID-IIs - Part I: ES-2re

2018-04-03
2018-01-1449
The main purpose of this study was to determine the impact responses of the different body regions (shoulder, thorax, abdomen and pelvis/leg) of the ES-2re and SID-IIs dummies using rigid wall impacts under different initial test conditions. The experimental set-up consisted of a flat rigid wall with five instrumented load-wall plates aligned with dummy’s shoulder, thorax, abdomen, pelvis and knee impacting a stationary dummy seated on a rigid seat at a pre-determined velocity. The relative location and orientation of the load-wall plates was adjusted relative to the body regions of the ES-2re and SID-IIs dummies respectively.
Technical Paper

Lightweighting of an Automotive Front End Structure Considering Frontal NCAP and Pedestrian Lower Leg Impact Safety Requirements

2016-04-05
2016-01-1520
The present work is concerned with the objective of design optimization of an automotive front end structure meeting both occupant and pedestrian safety requirements. The main goal adopted here is minimizing the mass of the front end structure meeting the safety requirements without sacrificing the performance targets. The front end structure should be sufficiently stiff to protect the occupant by absorbing the impact energy generated during a high speed frontal collision and at the same time it should not induce unduly high impact loads during a low speed pedestrian collision. These two requirements are potentially in conflict with each other; however, there may exist an optimum design solution, in terms of mass of front end structure, that meets both the requirements.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Journal Article

Finite Element Investigation of Seatbelt Systems for Improving Occupant Protection during Rollover Crashes

2009-04-20
2009-01-0825
The seatbelt system, originally designed for protecting occupants in frontal crashes, has been reported to be inadequate for preventing occupant head-to-roof contact during rollover crashes. To improve the effectiveness of seatbelt systems in rollovers, in this study, we reviewed previous literature and proposed vertical head excursion corridors during static inversion and dynamic rolling tests for human and Hybrid III dummy. Finite element models of a human and a dummy were integrated with restraint system models and validated against the proposed test corridors. Simulations were then conducted to investigate the effects of varying design factors for a three-point seatbelt on vertical head excursions of the occupant during rollovers. It was found that there were two contributing parts of vertical head excursions during dynamic rolling conditions.
Journal Article

A Method to Quantify Vehicle Dynamics and Deformation for Vehicle Rollover Tests Using Camera-Matching Video Analysis

2008-04-14
2008-01-0350
This paper examines the use of camera-matching video analysis techniques to quantify the vehicle dynamics and deformation for a dolly rollover test run in accordance with the SAE Recommended Practice J2114. The method presented enables vehicle motion data and deformation measurements to be obtained without the use of the automated target tracking employed by existing motion tracking systems. Since it does not rely on this automated target tracking, the method can be used to analyze video from rollover tests which were not setup in accordance with the requirements of these automated motion tracking systems. The method also provides a straightforward technique for relating the motion of points on the test vehicle to the motion of the vehicle's center-of-mass. This paper, first, describes the specific rollover test that was utilized. Then, the camera-matching method that was used to obtain the vehicle motion data and deformation measurements is described.
Journal Article

A Method for Determining the Vehicle-to-Ground Contact Load during Laboratory-based Rollover Tests

2008-04-14
2008-01-0351
Many rollover safety researches have been conducted experimentally and analytically to investigate the underlying causes of vehicle accidents and develop rollover test procedures and test methodologies to help understand the nature of rollover crash events. In addition, electronic and/or mechanical instrumentation are used in dummy and vehicle to measure their responses that allow both vehicle kinematics study and occupant injury assessment. However, method for measurement of dynamic structural deformation needs further exploration, and means to monitor vehicle-to-ground contact load is still lacking. Thus, this paper presents a method for determining the vehicle-to-ground load during laboratory-based rollover tests using results obtained from a camera-matching photogrammetric technology as inputs to a FE SUV model using a nonlinear crash analysis code.
Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Assessment Tool Development for Rollover CAE Signals Evaluation

2007-04-16
2007-01-0681
An assessment tool was developed for rollover CAE signals evaluation to assess primarily the qualities of CAE generated sensor waveforms. This is a key tool to be used to assess CAE results as to whether they can be used for algorithm calibration and identify areas for further improvement of sensor. Currently, the method is developed using error estimates on mean, peak and standard deviation. More metrics, if necessary, can be added to the assessment tool in the future. This method has been applied to various simulated signals for laboratory-based rollover test modes with rigid-body-based MADYDO models.
Technical Paper

A Study of Kinematics of Occupants Restrained with Seat Belt Systems in Component Rollover Tests

2007-04-16
2007-01-0709
An experimental study was conducted using a dynamic rollover component test system (ROCS) to study the effects of activating a pyro-mechanical buckle pre-tensioner and an electric retractor on the driver and front right passenger head and pelvis excursions. The ROCS is a unique system capable of producing vehicle responses that replicate four distinct phases of a tripped rollover: trip initiation, roll initiation, free-flight vehicle rotation, and vehicle to ground contact. This component test system consists of a rigid occupant compartment derived from a mid-size SUV with complete 1st row seating and interior trim, a simulated vehicle suspension system and an elastic vehicle-to-ground-contact surface. The ROCS system was integrated with a Deceleration Rollover Sled (DRS). Dynamic responses of the ROCS system, including both the rigid compartment and occupant, were measured and recorded.
Technical Paper

Image Analysis of Rollover Crash Tests Using Photogrammetry

2006-04-03
2006-01-0723
This paper presents an image analysis of a laboratory-based rollover crash test using camera-matching photogrammetry. The procedures pertaining to setup, analysis and data process used in this method are outlined. Vehicle roll angle and rate calculated using the method are presented and compared to the measured values obtained using a vehicle mounted angular rate sensor. Areas for improvement, accuracy determination, and vehicle kinematics analysis are discussed. This paper concludes that the photogrammetric method presented is a useful tool to extract vehicle roll angle data from test video. However, development of a robust post-processing tool for general application to crash safety analysis requires further exploration.
Technical Paper

A Dynamic Component Rollover Crash Test System

2006-04-03
2006-01-0721
Full vehicle dynamic crash tests are commonly used in the development of rollover detection sensors, algorithms and occupant protection systems. However, many published studies have utilized component level rollover test fixtures for rollover related occupant kinematics studies and restraint system evaluation and development. A majority of these fixtures attempted to replicate only the rotational motion that occurs during the free flight phase of a typical full vehicle rollover crash test. In this paper, a description of the methods used to design a new dynamic component rollover test device is presented. A brief summary of several existing rollover component test methods is included. The new system described in this paper is capable of replicating the transfer of lateral energy into rotational vehicle motion that is present in many tripped laboratory based rollover crash tests.
Technical Paper

Early Detection of Rollovers with Associated Test Development

2005-04-11
2005-01-0737
A number of studies, using data from NASS-CDS, have shown a large percentage of rollover crashes can be classified as tripped events. In many cases, the requirements for a tripped rollover detection algorithm are driven by the timely activation of an occupant containment device. To meet these requirements rollover detection algorithms have been developed by utilizing vehicle roll rate, lateral and vertical accelerations data collected primarily from laboratory tests. This study identifies and examines several challenges associated with developing a rollover detection algorithm with enhanced capabilities. Enhancement of the detection algorithm is explored by considering additional vehicle responses: forward velocity and sideslip angle. With the additional signals, discrimination of rollover crashes from other crash modes is discussed. Potential field/laboratory test modes are proposed to generate the additional vehicle signals.
Technical Paper

Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III

2002-11-11
2002-22-0012
Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.
Technical Paper

Selection of Vehicle Prototypes for Rollover Sensor Calibration Tests using CAE-DOE

2002-07-09
2002-01-2057
CAE has played a key role in development of the rollover safety technology by reducing the required number of prototypes. CAE-led Design Of Experiments (DOE) studies have helped in developing the process to minimize the number of CAE runs and to optimize use of the prototypes. This paper demonstrates the use of CAE/DOE for the design and optimization of rollover vehicle prototypes and also investigates effects of various factors in the selection of vehicle configuration for rollover sensor calibration testing. The process described herein has been successfully applied to vehicle programs. Modeling and analysis guidelines are also presented for CAE engineers to help in optimizing vehicle prototypes at program level.
Technical Paper

Development and Validation of a Pedestrian Lower Limb Non-Linear 3- D Finite Element Model

2000-11-01
2000-01-SC21
Lower limb injury is becoming an increasingly important concern in vehicle safety for both occupants and pedestrians. To enable vehicle manufacturers to better understand the biomechanical effects of design changes, it is deemed beneficial to employ a biomechanically fidelic finite element model of the human lower limb. The model developed in this study includes long bones (tibia, fibula, femur) and flat bone (patella) as deformable bodies. The pelvis and foot bones are modeled as rigid bodies connected to the femur and tibia/fibula via rotational spring-dashpots. The knee is defined by scanned bone surface geometry and is surrounded by the menisci, major ligaments, and patellar tendon. Finite elements used to model include 6- and 8-node solids for cartilage, menisci, surrounding muscles, and cancellous bone; 3- and 4-node shells for skin and cortical bone; and nonlinear spring-dashpots for ligaments.
Technical Paper

A Review of the State-of-the-Art of Angular Rate Sensors

2000-10-03
2000-01-2668
In today's automotive market, rollover protection systems are drawing an increasing attention. Unlike in conventional frontal and side impact events where linear accelerometers are used to detect the crash severity and make decision on deployment/non-deployment of the air bag restraint systems, rollover events require a new detection method using angular rate sensors. In the past, various angular rate sensors have been used in navigation systems to calculate pitch angle, or in camcorders for image stabilization. These sensors work at a low dynamic operating range, i.e. less than 100 degrees/sec. Angular rate sensors in automotive applications demand a higher dynamic capacity greater than 250 degrees/sec. (or °/s). This paper reviews automotive grade angular rate sensors currently being introduced for rollover protection system applications.
X